Removal of Acid Orange G Azo Dye by Polycation‐Modified Alpha Alumina Nanoparticles

Chemistry - An Asian Journal - Tập 18 Số 17 - 2023
Thi Hai Yen Doan1,1, Long Dang2, Thi Thuy Trang Truong2, Thi Ngan Vu2, Thanh Son Le2, Thi Minh Thu Nguyen2, Minh Ngoc Nguyen2, Thu Thao Pham3, Shin‐ichi Yusa3, Tien Duc Pham1
1Faculty of Chemistry University of Science Vietnam National University, Hanoi 19 Le Thanh Tong, Hoan Kiem Hanoi 100000 Vietnam
2Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi, 100000 Vietnam
3Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan

Tóm tắt

Abstract

Highly positively charged poly(vinyl benzyl trimethylammonium chloride) (PVBMA) was successfully synthesized with approximately 82% of yield. The PVBMA was characterized by the molecular weight (Mw) of 343.45 g mol−1and the molecular weight distribution, (Đ) of 2.4 by1H NMR and SEC measurements. The PVBMA was applied as an effective agent for α‐Al2O3surface modification in the adsorptive removal of the azo dye acid orange G (AOG). The AOG removal performance was significantly enhanced at all pH compared to without surface modification. The experimental parameters were optimal at pH 8, free ionic strength, 15 min of adsorption time, and 5 mg mL−1α‐Al2O3adsorbents. The AOG adsorption which was mainly controlled by the PVBMA‐AOG electrostatic attractions was better applicable to the Langmuir isotherm and the pseudo‐second kinetic model. The PVBMA‐modified α‐Al2O3demonstrates a high‐performance and highly reusable adsorbent with great AOG performances of approximately 90.1% after 6 reused cycles.

Từ khóa


Tài liệu tham khảo

10.1016/j.jece.2017.01.012

Fahdil A., 2018, J. Biochem. Technol., 9, 31

10.1016/j.jece.2017.07.069

10.1007/978-3-030-51210-1_35

10.1016/j.seppur.2018.04.001

10.1016/j.jece.2017.01.035

10.11648/j.ijec.20180201.13

Khosla E., 2016, Int. J. Basic Appl. Chem. Sci., 5, 37

10.1155/2022/3786561

10.4314/bcse.v21i1.61391

10.3749/canmin.49.5.1335

Rana A., 2021, Mater. Today: Proc.

10.1016/j.dyepig.2006.06.019

10.1016/j.foodchem.2015.07.085

10.2478/s11696-010-0083-x

10.1016/S0143-7208(02)00012-8

10.1007/s40090-015-0060-x

10.5004/dwt.2020.25923

10.1016/j.mrgentox.2006.08.002

10.1016/S0926-3373(02)00163-7

10.2175/106143015X14362865226879

10.1016/j.chemosphere.2016.10.064

10.2166/washdev.2014.214

Jiwan Singh Y. C. S., 2012, Int. Rev. Chem. Eng., 4

10.1155/2022/9425334

10.1007/s00396-015-3576-x

10.1016/j.envres.2022.114618

Umar A., 2017, J. Teknol., 79, 91, 10.11113/jt.v79.10728

10.1016/j.ijbiomac.2019.04.188

10.2478/s11696-010-0083-x

10.3390/polym13101536

C. P. Chauret inEncycl. Food Microbiol. Second Ed. Academic Press 2014 pp. 360–364.

J. Fisher inEncycl. Food Sci. Nutr. Academic Press 2003 pp. 1382–1385.

Y. Nakama inCosmet. Sci. Technol. Theor. Princ. Appl. Elsevier 2017 pp. 231–244.

10.1016/j.dyepig.2005.03.013

10.1016/j.colsurfa.2020.125208

10.4314/bcse.v21i1.61391

10.1016/j.colsurfa.2013.06.026

10.1021/la00046a030

10.1016/j.cis.2011.03.008

10.2166/washdev.2014.214

10.3390/polym13152394

10.1016/j.watres.2011.06.008

10.1016/j.ultsonch.2009.10.008

10.1016/j.ultsonch.2015.08.001

10.1016/j.cocis.2011.04.005

10.1021/la00039a011

L. Liu X. B. Luo L. Ding S. L. Luo inNanomater. Remov. Pollut. Resour. Reutil. Elsevier 2018 pp. 83–147.

10.1016/j.jcis.2007.07.075

10.1016/j.powtec.2010.03.036

10.1016/j.jcis.2007.07.077

10.1016/j.polymer.2004.03.044

10.47125/jesam/2017_2/02

10.1021/acsomega.9b04421

10.1039/F29777301232

10.1021/ie050703v

10.3390/molecules25225247

Shah M. P., 2014, Int. J. Environ. Bioremediation Biodegrad., 2, 93

Mondal M. K., 2010, Korean J. Chem. Eng. 2010 276, 27, 1811

10.1016/j.jhazmat.2010.11.067

10.1021/ma0018087

10.1016/j.molliq.2020.113150

10.1023/A:1021304828010

10.1016/j.watres.2005.10.040

10.1021/acs.langmuir.0c02352

10.1155/2012/541909