Cu‐catalyzed Synthesis of Quinolines by Dehydrogenative Reaction of 2‐Aminobenzyl Alcohol and Ketones: A Combined Experimental and Computational Study

Chemistry - An Asian Journal - Tập 17 Số 22 - 2022
Tuan Minh Ha1, Nina Thi Nguyen1, Ngoc Huyen Tran1, Quoc Viet Ho1, Nguyễn Thị Son1, Vân Hà Nguyễn1, Hien Nguyen2, Dang Van Do1, Tran Quang Hung3, Binh Khanh4, Tuan Thanh Dang1
1Faculty of Chemistry, VNU-Ha Noi University of Science, 19 Le Thanh Tong, Phan Chu Trinh, Hoan Kiem, Ha Noi, Vietnam
2Faculty of Chemistry Hanoi National University of Education (HNUE) 136 Xuan Thuy Cau Giay, Hanoi Vietnam
3Institute of Chemistry, Vietnamese Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi, Vietnam
4Department of Chemistry, Institution: University of Pittsburgh, 15260 Pittsburgh, Pennsylvania, USA

Tóm tắt

Abstract

Quinoline derivatives are important moieties in bioactive molecules and advanced materials. However, an efficient strategy to synthesize quinoline derivatives remains challenging. Herein, we describe an efficient and practical method for the synthesis of quinolines by Cu‐catalyzed cyclization of 2‐amino benzyl alcohol with ketones (or secondary alcohols) via an acceptorless dehydrogenation pathway. Interestingly, a range of highly functionalized quinolines is prepared in good yields using low catalyst loading under relatively mild conditions. Furthermore, density functional theory (DFT) calculations are carried out to investigate mechanistic insights for the acceptorless dehydrogenation pathway.

Từ khóa


Tài liệu tham khảo

 

Joule J. A., 2000, Heterocyclic Chemistry

10.1039/b104971m

10.3390/molecules25081909

10.1021/jm010949b

10.1016/S0960-894X(98)00201-7

10.1021/jm0100335

10.1016/j.ejmech.2014.07.044

10.1248/bpb.27.1683

10.1016/j.bmcl.2006.02.038

10.1016/S0223-5234(00)01175-2

 

10.1002/anie.200603129

10.1002/ange.200603129

10.1021/ja070394v

 

10.1002/adfm.200901595

10.1021/ic400908f

Jones G., 1984, Comprehensive Heterocyclic Chemistry, 2

 

10.1021/acs.orglett.7b01798

10.1039/C7QO00333A

10.1021/acs.joc.6b01909

10.1039/C5CC04391C

10.1002/anie.201202412

10.1002/ange.201202412

10.1021/jo902603v

10.1039/C4RA09153A

10.3987/COM-06-10790

10.1039/C5OB00075K

 

10.1039/b109245f

10.1002/ejoc.200701001

10.1016/j.jorganchem.2007.06.022

10.1002/cctc.201200496

10.1016/j.tetlet.2005.05.013

10.1002/cctc.201900860

10.1016/j.molcata.2008.10.024

 

10.1021/cr9002159

10.1002/cctc.201100255

10.1021/acs.chemrev.8b00306

10.1126/science.1229712

 

10.1039/D0QO01577F

10.1002/ejoc.202100695

 

10.1039/c3cc43227k

10.1002/cctc.202000254

10.1002/adsc.201701117

10.1002/aoc.4582

10.1021/acscatal.5b02638

10.1002/ejoc.200600945

 

10.1002/chem.201402952

10.1016/j.jcat.2019.03.028

 

10.1021/acs.orglett.9b00034

10.1002/cssc.201802636

10.1002/anie.201506698

10.1002/ange.201506698

 

10.1021/jacs.6b10433

10.1002/adsc.201800380

10.1021/acs.organomet.9b00475

10.1039/C8CC05877F

10.1002/chem.201900737

 

10.1021/acs.orglett.7b00106

10.1039/C7CC07427A

10.1039/C8CC02366B

 

10.1039/C7OB02670F

10.1021/acs.joc.8b03070

10.1021/acs.joc.7b03198

10.1021/acs.joc.0c01819

10.1021/acs.joc.9b01343

 

10.1002/asia.201701045

10.1016/j.mcat.2021.111462

 

10.1021/ar8000298

10.1039/c3cs60228a

 

10.1021/jacs.7b07373

10.1021/jacs.1c05769

10.1021/jacs.1c05212

 

10.1039/C9NJ01961H

10.1021/acscatal.1c01353