Chỉ số tinh thể của cellulose: các kỹ thuật đo đạc và tác động của chúng đến việc diễn giải hiệu suất của cellulase Dịch bởi AI - 2010
Sunkyu Park, John O. Baker, Michael E. Himmel, Philip A. Parilla, David K. Johnson
Mặc dù chỉ số tinh thể (CI) đã được đo lường từ lâu, nhưng đã phát hiện ra rằng CI thay đổi đáng kể tùy thuộc vào phương pháp đo được chọn. Trong nghiên cứu này, bốn kỹ thuật khác nhau kết hợp nhiễu xạ tia X và cộng hưởng từ hạt nhân carbon-13 rắn (NMR) đã được so sánh bằng cách sử dụng tám chế phẩm cellulose khác nhau. Chúng tôi nhận thấy rằng phương pháp đơn giản nhất, cũng là phương pháp phổ biến nhất, liên quan đến việc đo chỉ hai độ cao trong phổ nhiễu xạ tia X, đã tạo ra giá trị độ tinh thể cao hơn đáng kể so với các phương pháp khác. Dữ liệu trong tài liệu về chế phẩm cellulose đã sử dụng (Avicel PH-101) hỗ trợ cho nhận định này. Chúng tôi tin rằng các phương pháp XRD và NMR thay thế được trình bày ở đây, mà xem xét các đóng góp từ cellulose vô định hình và tinh thể vào toàn bộ phổ XRD và NMR, cung cấp một phép đo chính xác hơn về độ tinh thể của cellulose. Mặc dù cellulose có hàm lượng vô định hình cao thường dễ bị vi sinh vật phân hủy hơn, nhưng không rõ ràng, dựa trên các nghiên cứu được công bố trong tài liệu, liệu CI có thực sự cung cấp chỉ số rõ ràng về khả năng tiêu hóa của một mẫu cellulose hay không. Khả năng tiếp cận cellulose nên bị ảnh hưởng bởi độ tinh thể, nhưng cũng có khả năng bị ảnh hưởng bởi một số thông số khác, chẳng hạn như hàm lượng và phân bố lignin/hemicellulose, độ xốp và kích thước hạt. Với sự phụ thuộc vào phương pháp đo CI cellulose và bản chất phức tạp của sự tương tác của cellulase với cellulose vô định hình và tinh thể, chúng tôi cảnh báo không nên cố gắng tương quan những thay đổi tương đối nhỏ trong CI với những thay đổi trong khả năng tiêu hóa cellulose. Ngoài ra, dự đoán hiệu suất của cellulase dựa trên các mức chuyển đổi cellulose thấp có thể không bao gồm đủ sự tiêu hóa của thành phần tinh thể để có ý nghĩa.
Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae Tập 3 Số 1 - 2010
Sandra A Allen, William G. Clark, J. Michael McCaffery, Zhen Cai, Alison A. Lanctot, Patricia J. Slininger, Z. Lewis Liu, Steven Ward Gorsich
Abstract
Background
Biofuels offer a viable alternative to petroleum-based fuel. However, current methods are not sufficient and the technology required in order to use lignocellulosic biomass as a fermentation substrate faces several challenges. One challenge is the need for a robust fermentative microorganism that can tolerate the inhibitors present during lignocellulosic fermentation. These inhibitors include the furan aldehyde, furfural, which is released as a byproduct of pentose dehydration during the weak acid pretreatment of lignocellulose. In order to survive in the presence of furfural, yeast cells need not only to reduce furfural to the less toxic furan methanol, but also to protect themselves and repair any damage caused by the furfural. Since furfural tolerance in yeast requires a functional pentose phosphate pathway (PPP), and the PPP is associated with reactive oxygen species (ROS) tolerance, we decided to investigate whether or not furfural induces ROS and its related cellular damage in yeast.
Results
We demonstrated that furfural induces the accumulation of ROS in Saccharomyces cerevisiae. In addition, furfural was shown to cause cellular damage that is consistent with ROS accumulation in cells which includes damage to mitochondria and vacuole membranes, the actin cytoskeleton and nuclear chromatin. The furfural-induced damage is less severe when yeast are grown in a furfural concentration (25 mM) that allows for eventual growth after an extended lag compared to a concentration of furfural (50 mM) that prevents growth.
Conclusion
These data suggest that when yeast cells encounter the inhibitor furfural, they not only need to reduce furfural into furan methanol but also to protect themselves from the cellular effects of furfural and repair any damage caused. The reduced cellular damage seen at 25 mM furfural compared to 50 mM furfural may be linked to the observation that at 25 mM furfural yeast were able to exit the furfural-induced lag phase and resume growth. Understanding the cellular effects of furfural will help direct future strain development to engineer strains capable of tolerating or remediating ROS and the effects of ROS.
Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana Tập 6 Số 1 - 2013
Rebecca Van Acker, Ruben Vanholme, Véronique Storme, Jenny C. Mortimer, Paul Dupree, Wout Boerjan
Abstract
Background
Second-generation biofuels are generally produced from the polysaccharides in the lignocellulosic plant biomass, mainly cellulose. However, because cellulose is embedded in a matrix of other polysaccharides and lignin, its hydrolysis into the fermentable glucose is hampered. The senesced inflorescence stems of a set of 20 Arabidopsis thaliana mutants in 10 different genes of the lignin biosynthetic pathway were analyzed for cell wall composition and saccharification yield. Saccharification models were built to elucidate which cell wall parameters played a role in cell wall recalcitrance.
Results
Although lignin is a key polymer providing the strength necessary for the plant’s ability to grow upward, a reduction in lignin content down to 64% of the wild-type level in Arabidopsis was tolerated without any obvious growth penalty. In contrast to common perception, we found that a reduction in lignin was not compensated for by an increase in cellulose, but rather by an increase in matrix polysaccharides. In most lignin mutants, the saccharification yield was improved by up to 88% cellulose conversion for the cinnamoyl-coenzyme A reductase1 mutants under pretreatment conditions, whereas the wild-type cellulose conversion only reached 18%. The saccharification models and Pearson correlation matrix revealed that the lignin content was the main factor determining the saccharification yield. However, also lignin composition, matrix polysaccharide content and composition, and, especially, the xylose, galactose, and arabinose contents influenced the saccharification yield. Strikingly, cellulose content did not significantly affect saccharification yield.
Conclusions
Although the lignin content had the main effect on saccharification, also other cell wall factors could be engineered to potentially increase the cell wall processability, such as the galactose content. Our results contribute to a better understanding of the effect of lignin perturbations on plant cell wall composition and its influence on saccharification yield, and provide new potential targets for genetic improvement.
Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes - 2009
Aurélien Tartar, Marsha M. Wheeler, Xuguo Zhou, Monique R. Coy, Drion G. Boucias, Michael E. Scharf
AbstractBackgroundTermite lignocellulose digestion is achieved through a collaboration of host plus prokaryotic and eukaryotic symbionts. In the present work, we took a combined host and symbiont metatranscriptomic approach for investigating the digestive contributions of host and symbiont in the lower termiteReticulitermes flavipes. Our approach consisted of parallel high-throughput sequencing from (i) a host gut cDNA library and (ii) a hindgut symbiont cDNA library. Subsequently, we undertook functional analyses of newly identified phenoloxidases with potential importance as pretreatment enzymes in industrial lignocellulose processing.
ResultsOver 10,000 expressed sequence tags (ESTs) were sequenced from the 2 libraries that aligned into 6,555 putative transcripts, including 171 putative lignocellulase genes. Sequence analyses provided insights in two areas. First, a non-overlapping complement of host and symbiont (prokaryotic plus protist) glycohydrolase gene families known to participate in cellulose, hemicellulose, alpha carbohydrate, and chitin degradation were identified. Of these, cellulases are contributed by host plus symbiont genomes, whereas hemicellulases are contributed exclusively by symbiont genomes. Second, a diverse complement of previously unknown genes that encode proteins with homology to lignase, antioxidant, and detoxification enzymes were identified exclusively from the host library (laccase, catalase, peroxidase, superoxide dismutase, carboxylesterase, cytochrome P450). Subsequently, functional analyses of phenoloxidase activity provided results that were strongly consistent with patterns of laccase gene expression. In particular, phenoloxidase activity and laccase gene expression are mostly restricted to symbiont-free foregut plus salivary gland tissues, and phenoloxidase activity is inducible by lignin feeding.
ConclusionTo our knowledge, this is the first time that a dual host-symbiont transcriptome sequencing effort has been conducted in a single termite species. This sequence database represents an important new genomic resource for use in further studies of collaborative host-symbiont termite digestion, as well as development of coevolved host and symbiont-derived biocatalysts for use in industrial biomass-to-bioethanol applications. Additionally, this study demonstrates that: (i) phenoloxidase activities are prominent in theR. flavipesgut and are not symbiont derived, (ii) expands the known number of host and symbiont glycosyl hydrolase families inReticulitermes, and (iii) supports previous models of lignin degradation and host-symbiont collaboration in cellulose/hemicellulose digestion in the termite gut. All sequences in this paper are available publicly with the accession numbers FL634956-FL640828 (Termite Gut library) and FL641015-FL645753 (Symbiont library).