Furfural gây ra sự tích lũy các loài oxy phản ứng và tổn thương tế bào ở Saccharomyces cerevisiae
Tóm tắt
Từ khóa
Tài liệu tham khảo
Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G: Bio-ethanol - the fuel of tomorrow from the residues of today. Trends Biotechnol. 2006, 24: 549-556. 10.1016/j.tibtech.2006.10.004.
Wheals AE, Basso LC, Alves DM, Amorim HV: Fuel ethanol after 25 years. Trends Biotechnol. 1999, 17: 482-487. 10.1016/S0167-7799(99)01384-0.
Zaldivar J, Nielsen J, Olsson L: Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol. 2001, 56: 17-34. 10.1007/s002530100624.
Bothast J, Saha B: Ethanol production from agricultural biomass substrates. Adv Appl Microbiol. 1997, 44: 261-286. full_text.
Palmqvist E, Hahn-Hägerdal B: Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol. 2000, 74: 25-33. 10.1016/S0960-8524(99)00161-3.
Hahn-Hagerdal B, Linden T, Senac T, Skoog K: Ethanolic fermentation of pentoses in lignocellulose hydrolysates. Appl Biochem Biotechnol. 1991, 28-29: 131-144. 10.1007/BF02922595.
Almeida JRM, Modig T, Petersson A, Hahn-Hagerdal B, Liden G, gorwa-Grauslund MF: Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol. 2007, 82: 340-349. 10.1002/jctb.1676.
Klinke HB, Thomsen AB, Ahring BK: Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol. 2004, 66: 10-26. 10.1007/s00253-004-1642-2.
Liu ZL, Blaschek HP: Lignocellulosic biomass conversion to ethanol by Saccharomyces. Biomass to Biofuels. Edited by: Vertes A, Qureshi N, Yukawa H, Blaschek H. 2009, West Sussex, UK: John Wiley & Sons Ltd, 233-258.
Liu ZL, Moon J, Andersh BJ, Slininger PJ, Weber S: Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2008, 81: 743-753. 10.1007/s00253-008-1702-0.
Modig T, Liden G, Taherzadeh MJ: Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem J. 2002, 363: 769-776. 10.1042/0264-6021:3630769.
Liu ZL, Ma M, Song M: Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways. Mol Genet Genomics. 2009, 282: 233-44. 10.1007/s00438-009-0461-7.
Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD: Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2006, 71: 339-349. 10.1007/s00253-005-0142-3.
Agarwal S, Sharma S, Agrawal V, Roy N: Caloric restriction augments ROS defense in S. cerevisiae, by a Sir2p independent mechanism. Free Radic Res. 2005, 39: 55-62. 10.1080/10715760400022343.
Drakulic T, Temple MD, Guido R, Jarolim S, Breitenbach M, Attfield PV, Dawes IW: Involvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae. FEMS Yeast Res. 2005, 5: 1215-1228. 10.1016/j.femsyr.2005.06.001.
Moraitis C, Curran BP: Reactive oxygen species may influence the heat shock response and stress tolerance in the yeast Saccharomyces cerevisiae. Yeast. 2004, 21: 313-323. 10.1002/yea.1078.
Perrone GG, Tan SX, Dawes IW: Reactive oxygen species and yeast apoptosis. Biochim Biophys Acta. 2008, 1783: 1354-1368. 10.1016/j.bbamcr.2008.01.023.
Gourlay CW, Ayscough KR: Identification of an upstream regulatory pathway controlling actin-mediated apoptosis in yeast. J Cell Sci. 2005, 118: 2119-2132. 10.1242/jcs.02337.
Rowe LA, Degtyareva N, Doetsch PW: DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Radic Biol Med. 2008, 45: 1167-1177. 10.1016/j.freeradbiomed.2008.07.018.
Juhnke H, Krems B, Kotter P, Entian KD: Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress. Mol Gen Genet. 1996, 252: 456-464. 10.1007/BF02173011.
Minard KI, McAlister-Henn L: Antioxidant function of cytosolic sources of NADPH in yeast. Free Radic Biol Med. 2001, 31: 832-843. 10.1016/S0891-5849(01)00666-9.
Inoue Y, Matsuda T, Sugiyama K, Izawa S, Kimura A: Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J Biol Chem. 1999, 274: 27002-27009. 10.1074/jbc.274.38.27002.
Matsufuji Y, Fujimura S, Ito T, Nishizawa M, Miyaji T, Nakagawa J, Ohyama T, Tomizuka N, Nakagawa T: Acetaldehyde tolerance in Saccharomyces cerevisiae involves the pentose phosphate pathway and oleic acid biosynthesis. Yeast. 2008, 25: 825-833. 10.1002/yea.1637.
Trotter EW, Collinson EJ, Dawes IW, Grant CM: Old yellow enzymes protect against acrolein toxicity in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol. 2006, 72: 4885-4892. 10.1128/AEM.00526-06.
Okamoto K, Shaw JM: Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet. 2005, 39: 503-536. 10.1146/annurev.genet.38.072902.093019.
Shepard KA, Yaffe MP: The yeast dynamin-like protein, Mgm1p, functions on the mitochondrial outer membrane to mediate mitochondrial inheritance. J Cell Biol. 1999, 144: 711-720. 10.1083/jcb.144.4.711.
Wong ED, Wagner JA, Gorsich SW, McCaffery JM, Shaw JM, Nunnari J: The dynamin-related GTPase, Mgm1p, is an intermembrane space protein required for maintenance of fusion competent mitochondria. J Cell Biol. 2000, 151: 341-352. 10.1083/jcb.151.2.341.
Bossy-Wetzel E, Barsoum MJ, Godzik A, Schwarzenbacher R, Lipton SA: Mitochondrial fission in apoptosis, neurodegeneration and aging. Curr Opin Cell Biol. 2003, 15: 706-716. 10.1016/j.ceb.2003.10.015.
Kanazawa T, Zappaterra MD, Hasegawa A, Wright AP, Newman-Smith ED, Buttle KF, McDonald K, Mannella CA, Bliek van der AM: The C. elegans Opa1 homologue EAT-3 is essential for resistance to free radicals. PLoS Genet. 2008, 4: e1000022-10.1371/journal.pgen.1000022.
Tang S, Le PK, Tse S, Wallace DC, Huang T: Heterozygous mutation of Opa1 in drosophila shortens lifespan mediated through increased reactive oxygen species production. PLoS One. 2009, 4: e4492-10.1371/journal.pone.0004492.
Raymond CK, Roberts CJ, Moore KE, Howald I, Stevens TH: Biogenesis of the vacuole in Saccharomyces cerevisiae. Int Rev Cytol. 1992, 139: 59-120. full_text.
Guthrie BA, Wickner W: Yeast vacuoles fragment when microtubules are disrupted. J Cell Biol. 1988, 107: 115-120. 10.1083/jcb.107.1.115.
Raymond CK, Howald-Stevenson I, Vater CA, Stevens TH: Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol Biol Cell. 1992, 3: 1389-1402.
Schneiter R, Guerra CE, Lampl M, Tatzer V, Zellnig G, Klein HL, Kohlwein SD: A novel cold-sensitive allele of the rate-limiting enzyme of fatty acid synthesis, acetyl coenzyme A carboxylase, affects the morphology of the yeast vacuole through acylation of Vac8p. Mol Cell Biol. 2000, 20: 2984-2995. 10.1128/MCB.20.9.2984-2995.2000.
Madeo F, Frohlich E, Frohlich KU: A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol. 1997, 139: 729-734. 10.1083/jcb.139.3.729.
Madeo F, Frohlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Frohlich KU: Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol. 1999, 145: 757-767. 10.1083/jcb.145.4.757.
Moseley JB, Goode BL: The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol Mol Biol Rev. 2006, 70: 605-645. 10.1128/MMBR.00013-06.
Gourlay CW, Carpp LN, Timpson P, Winder SJ, Ayscough KR: A role for the actin cytoskeleton in cell death and aging in yeast. J Cell Biol. 2004, 164: 803-809. 10.1083/jcb.200310148.
Wiederkehr A, Meier KD, Riezman H: Identification and characterization of Saccharomyces cerevisiae mutants defective in fluid-phase endocytosis. Yeast. 2001, 18: 759-773. 10.1002/yea.726.
Liu ZL, Moon J: A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. Gene. 2009, 446: 1-10. 10.1016/j.gene.2009.06.018.
Petersson A, Almeida JR, Modig T, Karhumaa K, Hahn-Hagerdal B, Gorwa-Grauslund MF, Liden G: A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast. 2006, 23: 455-464. 10.1002/yea.1370.
Guthrie C, Fink G: Guide to Yeast Genetics and Molecular Biology. 1991, San Diego: Academic Press
Sherman F, Fink GR, Hicks JB: Methods in Yeast Genetics. 1986, Cold Spring Harbor, NY: Cold Spring Harbor Press
Winston F, Dollard C, Ricupero-Hovasse SL: Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast. 1995, 11: 53-55. 10.1002/yea.320110107.
Westermann B, Neupert W: Mitochondria-targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae. Yeast. 2000, 16: 1421-1427. 10.1002/1097-0061(200011)16:15<1421::AID-YEA624>3.0.CO;2-U.
Gietz RD, Woods RA: Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 2002, 350: 87-96. full_text.
Ribeiro GF, Corte-Real M, Johansson B: Characterization of DNA damage in yeast apoptosis induced by hydrogen peroxide, acetic acid, and hyperosmotic shock. Mol Biol Cell. 2006, 17: 4584-4591. 10.1091/mbc.E06-05-0475.
Rieder SE, Banta LM, Kohrer K, McCaffery JM, Emr SD: Multilamellar endosome-like compartment accumulates in the yeast vps28 vacuolar protein sorting mutant. Mol Biol Cell. 1996, 7: 985-999.
Vida TA, Emr SD: A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol. 1995, 128: 779-792. 10.1083/jcb.128.5.779.
Meeusen S, Tieu Q, Wong E, Weiss E, Schieltz D, Yates JR, Nunnari J: Mgm101p is a novel component of the mitochondrial nucleoid that binds DNA and is required for the repair of oxidatively damaged mitochondrial DNA. J Cell Biol. 1999, 145: 291-304. 10.1083/jcb.145.2.291.