Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae

Biotechnology for Biofuels - Tập 3 Số 1 - 2010
Sandra A Allen1, William G. Clark1, J. Michael McCaffery2, Zhen Cai1, Alison A. Lanctot1, Patricia J. Slininger3, Z. Lewis Liu3, Steven Ward Gorsich1
1Biology Department, Central Michigan University, Mt Pleasant, USA
2Integrated Imaging Center, Department of Biology, Johns Hopkins University, Baltimore, USA
3Agricultural Research Service, United States Department of Agriculture, National Center for Agricultural Utilization Research, Peoria, USA

Tóm tắt

Abstract Background

Biofuels offer a viable alternative to petroleum-based fuel. However, current methods are not sufficient and the technology required in order to use lignocellulosic biomass as a fermentation substrate faces several challenges. One challenge is the need for a robust fermentative microorganism that can tolerate the inhibitors present during lignocellulosic fermentation. These inhibitors include the furan aldehyde, furfural, which is released as a byproduct of pentose dehydration during the weak acid pretreatment of lignocellulose. In order to survive in the presence of furfural, yeast cells need not only to reduce furfural to the less toxic furan methanol, but also to protect themselves and repair any damage caused by the furfural. Since furfural tolerance in yeast requires a functional pentose phosphate pathway (PPP), and the PPP is associated with reactive oxygen species (ROS) tolerance, we decided to investigate whether or not furfural induces ROS and its related cellular damage in yeast.

Results

We demonstrated that furfural induces the accumulation of ROS in Saccharomyces cerevisiae. In addition, furfural was shown to cause cellular damage that is consistent with ROS accumulation in cells which includes damage to mitochondria and vacuole membranes, the actin cytoskeleton and nuclear chromatin. The furfural-induced damage is less severe when yeast are grown in a furfural concentration (25 mM) that allows for eventual growth after an extended lag compared to a concentration of furfural (50 mM) that prevents growth.

Conclusion

These data suggest that when yeast cells encounter the inhibitor furfural, they not only need to reduce furfural into furan methanol but also to protect themselves from the cellular effects of furfural and repair any damage caused. The reduced cellular damage seen at 25 mM furfural compared to 50 mM furfural may be linked to the observation that at 25 mM furfural yeast were able to exit the furfural-induced lag phase and resume growth. Understanding the cellular effects of furfural will help direct future strain development to engineer strains capable of tolerating or remediating ROS and the effects of ROS.

Từ khóa


Tài liệu tham khảo

Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G: Bio-ethanol - the fuel of tomorrow from the residues of today. Trends Biotechnol. 2006, 24: 549-556. 10.1016/j.tibtech.2006.10.004.

Wheals AE, Basso LC, Alves DM, Amorim HV: Fuel ethanol after 25 years. Trends Biotechnol. 1999, 17: 482-487. 10.1016/S0167-7799(99)01384-0.

Zaldivar J, Nielsen J, Olsson L: Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol. 2001, 56: 17-34. 10.1007/s002530100624.

Bothast J, Saha B: Ethanol production from agricultural biomass substrates. Adv Appl Microbiol. 1997, 44: 261-286. full_text.

Palmqvist E, Hahn-Hägerdal B: Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol. 2000, 74: 25-33. 10.1016/S0960-8524(99)00161-3.

Hahn-Hagerdal B, Linden T, Senac T, Skoog K: Ethanolic fermentation of pentoses in lignocellulose hydrolysates. Appl Biochem Biotechnol. 1991, 28-29: 131-144. 10.1007/BF02922595.

Almeida JRM, Modig T, Petersson A, Hahn-Hagerdal B, Liden G, gorwa-Grauslund MF: Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol. 2007, 82: 340-349. 10.1002/jctb.1676.

Klinke HB, Thomsen AB, Ahring BK: Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol. 2004, 66: 10-26. 10.1007/s00253-004-1642-2.

Liu ZL, Blaschek HP: Lignocellulosic biomass conversion to ethanol by Saccharomyces. Biomass to Biofuels. Edited by: Vertes A, Qureshi N, Yukawa H, Blaschek H. 2009, West Sussex, UK: John Wiley & Sons Ltd, 233-258.

Liu ZL, Moon J, Andersh BJ, Slininger PJ, Weber S: Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2008, 81: 743-753. 10.1007/s00253-008-1702-0.

Modig T, Liden G, Taherzadeh MJ: Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem J. 2002, 363: 769-776. 10.1042/0264-6021:3630769.

Liu ZL, Ma M, Song M: Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways. Mol Genet Genomics. 2009, 282: 233-44. 10.1007/s00438-009-0461-7.

Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD: Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2006, 71: 339-349. 10.1007/s00253-005-0142-3.

Agarwal S, Sharma S, Agrawal V, Roy N: Caloric restriction augments ROS defense in S. cerevisiae, by a Sir2p independent mechanism. Free Radic Res. 2005, 39: 55-62. 10.1080/10715760400022343.

Drakulic T, Temple MD, Guido R, Jarolim S, Breitenbach M, Attfield PV, Dawes IW: Involvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae. FEMS Yeast Res. 2005, 5: 1215-1228. 10.1016/j.femsyr.2005.06.001.

Moraitis C, Curran BP: Reactive oxygen species may influence the heat shock response and stress tolerance in the yeast Saccharomyces cerevisiae. Yeast. 2004, 21: 313-323. 10.1002/yea.1078.

Perrone GG, Tan SX, Dawes IW: Reactive oxygen species and yeast apoptosis. Biochim Biophys Acta. 2008, 1783: 1354-1368. 10.1016/j.bbamcr.2008.01.023.

Gourlay CW, Ayscough KR: Identification of an upstream regulatory pathway controlling actin-mediated apoptosis in yeast. J Cell Sci. 2005, 118: 2119-2132. 10.1242/jcs.02337.

Rowe LA, Degtyareva N, Doetsch PW: DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Radic Biol Med. 2008, 45: 1167-1177. 10.1016/j.freeradbiomed.2008.07.018.

Juhnke H, Krems B, Kotter P, Entian KD: Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress. Mol Gen Genet. 1996, 252: 456-464. 10.1007/BF02173011.

Minard KI, McAlister-Henn L: Antioxidant function of cytosolic sources of NADPH in yeast. Free Radic Biol Med. 2001, 31: 832-843. 10.1016/S0891-5849(01)00666-9.

Inoue Y, Matsuda T, Sugiyama K, Izawa S, Kimura A: Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J Biol Chem. 1999, 274: 27002-27009. 10.1074/jbc.274.38.27002.

Matsufuji Y, Fujimura S, Ito T, Nishizawa M, Miyaji T, Nakagawa J, Ohyama T, Tomizuka N, Nakagawa T: Acetaldehyde tolerance in Saccharomyces cerevisiae involves the pentose phosphate pathway and oleic acid biosynthesis. Yeast. 2008, 25: 825-833. 10.1002/yea.1637.

Trotter EW, Collinson EJ, Dawes IW, Grant CM: Old yellow enzymes protect against acrolein toxicity in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol. 2006, 72: 4885-4892. 10.1128/AEM.00526-06.

Okamoto K, Shaw JM: Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet. 2005, 39: 503-536. 10.1146/annurev.genet.38.072902.093019.

Shepard KA, Yaffe MP: The yeast dynamin-like protein, Mgm1p, functions on the mitochondrial outer membrane to mediate mitochondrial inheritance. J Cell Biol. 1999, 144: 711-720. 10.1083/jcb.144.4.711.

Wong ED, Wagner JA, Gorsich SW, McCaffery JM, Shaw JM, Nunnari J: The dynamin-related GTPase, Mgm1p, is an intermembrane space protein required for maintenance of fusion competent mitochondria. J Cell Biol. 2000, 151: 341-352. 10.1083/jcb.151.2.341.

Bossy-Wetzel E, Barsoum MJ, Godzik A, Schwarzenbacher R, Lipton SA: Mitochondrial fission in apoptosis, neurodegeneration and aging. Curr Opin Cell Biol. 2003, 15: 706-716. 10.1016/j.ceb.2003.10.015.

Kanazawa T, Zappaterra MD, Hasegawa A, Wright AP, Newman-Smith ED, Buttle KF, McDonald K, Mannella CA, Bliek van der AM: The C. elegans Opa1 homologue EAT-3 is essential for resistance to free radicals. PLoS Genet. 2008, 4: e1000022-10.1371/journal.pgen.1000022.

Tang S, Le PK, Tse S, Wallace DC, Huang T: Heterozygous mutation of Opa1 in drosophila shortens lifespan mediated through increased reactive oxygen species production. PLoS One. 2009, 4: e4492-10.1371/journal.pone.0004492.

Raymond CK, Roberts CJ, Moore KE, Howald I, Stevens TH: Biogenesis of the vacuole in Saccharomyces cerevisiae. Int Rev Cytol. 1992, 139: 59-120. full_text.

Guthrie BA, Wickner W: Yeast vacuoles fragment when microtubules are disrupted. J Cell Biol. 1988, 107: 115-120. 10.1083/jcb.107.1.115.

Raymond CK, Howald-Stevenson I, Vater CA, Stevens TH: Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol Biol Cell. 1992, 3: 1389-1402.

Schneiter R, Guerra CE, Lampl M, Tatzer V, Zellnig G, Klein HL, Kohlwein SD: A novel cold-sensitive allele of the rate-limiting enzyme of fatty acid synthesis, acetyl coenzyme A carboxylase, affects the morphology of the yeast vacuole through acylation of Vac8p. Mol Cell Biol. 2000, 20: 2984-2995. 10.1128/MCB.20.9.2984-2995.2000.

Madeo F, Frohlich E, Frohlich KU: A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol. 1997, 139: 729-734. 10.1083/jcb.139.3.729.

Madeo F, Frohlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Frohlich KU: Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol. 1999, 145: 757-767. 10.1083/jcb.145.4.757.

Moseley JB, Goode BL: The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol Mol Biol Rev. 2006, 70: 605-645. 10.1128/MMBR.00013-06.

Gourlay CW, Carpp LN, Timpson P, Winder SJ, Ayscough KR: A role for the actin cytoskeleton in cell death and aging in yeast. J Cell Biol. 2004, 164: 803-809. 10.1083/jcb.200310148.

Wiederkehr A, Meier KD, Riezman H: Identification and characterization of Saccharomyces cerevisiae mutants defective in fluid-phase endocytosis. Yeast. 2001, 18: 759-773. 10.1002/yea.726.

Liu ZL, Moon J: A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. Gene. 2009, 446: 1-10. 10.1016/j.gene.2009.06.018.

Petersson A, Almeida JR, Modig T, Karhumaa K, Hahn-Hagerdal B, Gorwa-Grauslund MF, Liden G: A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast. 2006, 23: 455-464. 10.1002/yea.1370.

Guthrie C, Fink G: Guide to Yeast Genetics and Molecular Biology. 1991, San Diego: Academic Press

Sherman F, Fink GR, Hicks JB: Methods in Yeast Genetics. 1986, Cold Spring Harbor, NY: Cold Spring Harbor Press

Winston F, Dollard C, Ricupero-Hovasse SL: Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast. 1995, 11: 53-55. 10.1002/yea.320110107.

Westermann B, Neupert W: Mitochondria-targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae. Yeast. 2000, 16: 1421-1427. 10.1002/1097-0061(200011)16:15<1421::AID-YEA624>3.0.CO;2-U.

Gietz RD, Woods RA: Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 2002, 350: 87-96. full_text.

Ribeiro GF, Corte-Real M, Johansson B: Characterization of DNA damage in yeast apoptosis induced by hydrogen peroxide, acetic acid, and hyperosmotic shock. Mol Biol Cell. 2006, 17: 4584-4591. 10.1091/mbc.E06-05-0475.

Rieder SE, Banta LM, Kohrer K, McCaffery JM, Emr SD: Multilamellar endosome-like compartment accumulates in the yeast vps28 vacuolar protein sorting mutant. Mol Biol Cell. 1996, 7: 985-999.

Vida TA, Emr SD: A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol. 1995, 128: 779-792. 10.1083/jcb.128.5.779.

Meeusen S, Tieu Q, Wong E, Weiss E, Schieltz D, Yates JR, Nunnari J: Mgm101p is a novel component of the mitochondrial nucleoid that binds DNA and is required for the repair of oxidatively damaged mitochondrial DNA. J Cell Biol. 1999, 145: 291-304. 10.1083/jcb.145.2.291.

Adams AE, Pringle JR: Staining of actin with fluorochrome-conjugated phalloidin. Methods Enzymol. 1991, 194: 729-731. full_text.