Furfural gây ra sự tích lũy các loài oxy phản ứng và tổn thương tế bào ở Saccharomyces cerevisiae
Tóm tắt
Sinh khối sinh học cung cấp một lựa chọn khả thi thay thế cho nhiên liệu dựa trên dầu mỏ. Tuy nhiên, các phương pháp hiện tại chưa đủ hiệu quả và công nghệ cần thiết để sử dụng sinh khối lignocellulosic như một nền tảng lên men gặp nhiều thách thức. Một trong những thách thức là cần có một vi sinh vật lên men mạnh mẽ có khả năng chịu đựng các chất ức chế có mặt trong quá trình lên men lignocellulosic. Những chất ức chế này bao gồm furan aldehyde, furfural, được giải phóng như một sản phẩm phụ của sự khử nước pentose trong quá trình xử lý axit yếu của lignocellulose. Để tồn tại trong môi trường có mặt furan, các tế bào nấm men không chỉ cần giảm furfural thành furan methanol ít độc hại hơn mà còn phải tự bảo vệ và sửa chữa bất kỳ tổn thương nào do furfural gây ra. Vì khả năng chịu đựng furfural ở nấm men yêu cầu một con đường phốt phát pentose (PPP) hoạt động, và PPP liên quan đến khả năng chịu đựng các loài oxy phản ứng (ROS), chúng tôi quyết định điều tra liệu furfural có kích thích ROS và tổn thương tế bào liên quan hay không ở nấm men.
Từ khóa
Tài liệu tham khảo
Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G: Bio-ethanol - the fuel of tomorrow from the residues of today. Trends Biotechnol. 2006, 24: 549-556. 10.1016/j.tibtech.2006.10.004.
Wheals AE, Basso LC, Alves DM, Amorim HV: Fuel ethanol after 25 years. Trends Biotechnol. 1999, 17: 482-487. 10.1016/S0167-7799(99)01384-0.
Zaldivar J, Nielsen J, Olsson L: Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol. 2001, 56: 17-34. 10.1007/s002530100624.
Bothast J, Saha B: Ethanol production from agricultural biomass substrates. Adv Appl Microbiol. 1997, 44: 261-286. full_text.
Palmqvist E, Hahn-Hägerdal B: Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol. 2000, 74: 25-33. 10.1016/S0960-8524(99)00161-3.
Hahn-Hagerdal B, Linden T, Senac T, Skoog K: Ethanolic fermentation of pentoses in lignocellulose hydrolysates. Appl Biochem Biotechnol. 1991, 28-29: 131-144. 10.1007/BF02922595.
Almeida JRM, Modig T, Petersson A, Hahn-Hagerdal B, Liden G, gorwa-Grauslund MF: Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol. 2007, 82: 340-349. 10.1002/jctb.1676.
Klinke HB, Thomsen AB, Ahring BK: Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol. 2004, 66: 10-26. 10.1007/s00253-004-1642-2.
Liu ZL, Blaschek HP: Lignocellulosic biomass conversion to ethanol by Saccharomyces. Biomass to Biofuels. Edited by: Vertes A, Qureshi N, Yukawa H, Blaschek H. 2009, West Sussex, UK: John Wiley & Sons Ltd, 233-258.
Liu ZL, Moon J, Andersh BJ, Slininger PJ, Weber S: Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2008, 81: 743-753. 10.1007/s00253-008-1702-0.
Modig T, Liden G, Taherzadeh MJ: Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem J. 2002, 363: 769-776. 10.1042/0264-6021:3630769.
Liu ZL, Ma M, Song M: Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways. Mol Genet Genomics. 2009, 282: 233-44. 10.1007/s00438-009-0461-7.
Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD: Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2006, 71: 339-349. 10.1007/s00253-005-0142-3.
Agarwal S, Sharma S, Agrawal V, Roy N: Caloric restriction augments ROS defense in S. cerevisiae, by a Sir2p independent mechanism. Free Radic Res. 2005, 39: 55-62. 10.1080/10715760400022343.
Drakulic T, Temple MD, Guido R, Jarolim S, Breitenbach M, Attfield PV, Dawes IW: Involvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae. FEMS Yeast Res. 2005, 5: 1215-1228. 10.1016/j.femsyr.2005.06.001.
Moraitis C, Curran BP: Reactive oxygen species may influence the heat shock response and stress tolerance in the yeast Saccharomyces cerevisiae. Yeast. 2004, 21: 313-323. 10.1002/yea.1078.
Perrone GG, Tan SX, Dawes IW: Reactive oxygen species and yeast apoptosis. Biochim Biophys Acta. 2008, 1783: 1354-1368. 10.1016/j.bbamcr.2008.01.023.
Gourlay CW, Ayscough KR: Identification of an upstream regulatory pathway controlling actin-mediated apoptosis in yeast. J Cell Sci. 2005, 118: 2119-2132. 10.1242/jcs.02337.
Rowe LA, Degtyareva N, Doetsch PW: DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Radic Biol Med. 2008, 45: 1167-1177. 10.1016/j.freeradbiomed.2008.07.018.
Juhnke H, Krems B, Kotter P, Entian KD: Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress. Mol Gen Genet. 1996, 252: 456-464. 10.1007/BF02173011.
Minard KI, McAlister-Henn L: Antioxidant function of cytosolic sources of NADPH in yeast. Free Radic Biol Med. 2001, 31: 832-843. 10.1016/S0891-5849(01)00666-9.
Inoue Y, Matsuda T, Sugiyama K, Izawa S, Kimura A: Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J Biol Chem. 1999, 274: 27002-27009. 10.1074/jbc.274.38.27002.
Matsufuji Y, Fujimura S, Ito T, Nishizawa M, Miyaji T, Nakagawa J, Ohyama T, Tomizuka N, Nakagawa T: Acetaldehyde tolerance in Saccharomyces cerevisiae involves the pentose phosphate pathway and oleic acid biosynthesis. Yeast. 2008, 25: 825-833. 10.1002/yea.1637.
Trotter EW, Collinson EJ, Dawes IW, Grant CM: Old yellow enzymes protect against acrolein toxicity in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol. 2006, 72: 4885-4892. 10.1128/AEM.00526-06.
Okamoto K, Shaw JM: Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet. 2005, 39: 503-536. 10.1146/annurev.genet.38.072902.093019.
Shepard KA, Yaffe MP: The yeast dynamin-like protein, Mgm1p, functions on the mitochondrial outer membrane to mediate mitochondrial inheritance. J Cell Biol. 1999, 144: 711-720. 10.1083/jcb.144.4.711.
Wong ED, Wagner JA, Gorsich SW, McCaffery JM, Shaw JM, Nunnari J: The dynamin-related GTPase, Mgm1p, is an intermembrane space protein required for maintenance of fusion competent mitochondria. J Cell Biol. 2000, 151: 341-352. 10.1083/jcb.151.2.341.
Bossy-Wetzel E, Barsoum MJ, Godzik A, Schwarzenbacher R, Lipton SA: Mitochondrial fission in apoptosis, neurodegeneration and aging. Curr Opin Cell Biol. 2003, 15: 706-716. 10.1016/j.ceb.2003.10.015.
Kanazawa T, Zappaterra MD, Hasegawa A, Wright AP, Newman-Smith ED, Buttle KF, McDonald K, Mannella CA, Bliek van der AM: The C. elegans Opa1 homologue EAT-3 is essential for resistance to free radicals. PLoS Genet. 2008, 4: e1000022-10.1371/journal.pgen.1000022.
Tang S, Le PK, Tse S, Wallace DC, Huang T: Heterozygous mutation of Opa1 in drosophila shortens lifespan mediated through increased reactive oxygen species production. PLoS One. 2009, 4: e4492-10.1371/journal.pone.0004492.
Raymond CK, Roberts CJ, Moore KE, Howald I, Stevens TH: Biogenesis of the vacuole in Saccharomyces cerevisiae. Int Rev Cytol. 1992, 139: 59-120. full_text.
Guthrie BA, Wickner W: Yeast vacuoles fragment when microtubules are disrupted. J Cell Biol. 1988, 107: 115-120. 10.1083/jcb.107.1.115.
Raymond CK, Howald-Stevenson I, Vater CA, Stevens TH: Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol Biol Cell. 1992, 3: 1389-1402.
Schneiter R, Guerra CE, Lampl M, Tatzer V, Zellnig G, Klein HL, Kohlwein SD: A novel cold-sensitive allele of the rate-limiting enzyme of fatty acid synthesis, acetyl coenzyme A carboxylase, affects the morphology of the yeast vacuole through acylation of Vac8p. Mol Cell Biol. 2000, 20: 2984-2995. 10.1128/MCB.20.9.2984-2995.2000.
Madeo F, Frohlich E, Frohlich KU: A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol. 1997, 139: 729-734. 10.1083/jcb.139.3.729.
Madeo F, Frohlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Frohlich KU: Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol. 1999, 145: 757-767. 10.1083/jcb.145.4.757.
Moseley JB, Goode BL: The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol Mol Biol Rev. 2006, 70: 605-645. 10.1128/MMBR.00013-06.
Gourlay CW, Carpp LN, Timpson P, Winder SJ, Ayscough KR: A role for the actin cytoskeleton in cell death and aging in yeast. J Cell Biol. 2004, 164: 803-809. 10.1083/jcb.200310148.
Wiederkehr A, Meier KD, Riezman H: Identification and characterization of Saccharomyces cerevisiae mutants defective in fluid-phase endocytosis. Yeast. 2001, 18: 759-773. 10.1002/yea.726.
Liu ZL, Moon J: A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. Gene. 2009, 446: 1-10. 10.1016/j.gene.2009.06.018.
Petersson A, Almeida JR, Modig T, Karhumaa K, Hahn-Hagerdal B, Gorwa-Grauslund MF, Liden G: A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast. 2006, 23: 455-464. 10.1002/yea.1370.
Guthrie C, Fink G: Guide to Yeast Genetics and Molecular Biology. 1991, San Diego: Academic Press
Sherman F, Fink GR, Hicks JB: Methods in Yeast Genetics. 1986, Cold Spring Harbor, NY: Cold Spring Harbor Press
Winston F, Dollard C, Ricupero-Hovasse SL: Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast. 1995, 11: 53-55. 10.1002/yea.320110107.
Westermann B, Neupert W: Mitochondria-targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae. Yeast. 2000, 16: 1421-1427. 10.1002/1097-0061(200011)16:15<1421::AID-YEA624>3.0.CO;2-U.
Gietz RD, Woods RA: Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 2002, 350: 87-96. full_text.
Ribeiro GF, Corte-Real M, Johansson B: Characterization of DNA damage in yeast apoptosis induced by hydrogen peroxide, acetic acid, and hyperosmotic shock. Mol Biol Cell. 2006, 17: 4584-4591. 10.1091/mbc.E06-05-0475.
Rieder SE, Banta LM, Kohrer K, McCaffery JM, Emr SD: Multilamellar endosome-like compartment accumulates in the yeast vps28 vacuolar protein sorting mutant. Mol Biol Cell. 1996, 7: 985-999.
Vida TA, Emr SD: A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol. 1995, 128: 779-792. 10.1083/jcb.128.5.779.
Meeusen S, Tieu Q, Wong E, Weiss E, Schieltz D, Yates JR, Nunnari J: Mgm101p is a novel component of the mitochondrial nucleoid that binds DNA and is required for the repair of oxidatively damaged mitochondrial DNA. J Cell Biol. 1999, 145: 291-304. 10.1083/jcb.145.2.291.