Chỉ số tinh thể của cellulose: các kỹ thuật đo đạc và tác động của chúng đến việc diễn giải hiệu suất của cellulase

Sunkyu Park1, John O. Baker1, Michael E. Himmel1, Philip A. Parilla2, David K. Johnson1
1Biosciences Center, National Renewable Energy Laboratory, 1617 Cole Blvd Golden, CO, 80401, USA
2National Center for Photovoltaics, National Renewable Energy Laboratory, 1617 Cole Blvd Golden, CO, 80401, USA

Tóm tắt

Mặc dù chỉ số tinh thể (CI) đã được đo lường từ lâu, nhưng đã phát hiện ra rằng CI thay đổi đáng kể tùy thuộc vào phương pháp đo được chọn. Trong nghiên cứu này, bốn kỹ thuật khác nhau kết hợp nhiễu xạ tia X và cộng hưởng từ hạt nhân carbon-13 rắn (NMR) đã được so sánh bằng cách sử dụng tám chế phẩm cellulose khác nhau. Chúng tôi nhận thấy rằng phương pháp đơn giản nhất, cũng là phương pháp phổ biến nhất, liên quan đến việc đo chỉ hai độ cao trong phổ nhiễu xạ tia X, đã tạo ra giá trị độ tinh thể cao hơn đáng kể so với các phương pháp khác. Dữ liệu trong tài liệu về chế phẩm cellulose đã sử dụng (Avicel PH-101) hỗ trợ cho nhận định này. Chúng tôi tin rằng các phương pháp XRD và NMR thay thế được trình bày ở đây, mà xem xét các đóng góp từ cellulose vô định hình và tinh thể vào toàn bộ phổ XRD và NMR, cung cấp một phép đo chính xác hơn về độ tinh thể của cellulose. Mặc dù cellulose có hàm lượng vô định hình cao thường dễ bị vi sinh vật phân hủy hơn, nhưng không rõ ràng, dựa trên các nghiên cứu được công bố trong tài liệu, liệu CI có thực sự cung cấp chỉ số rõ ràng về khả năng tiêu hóa của một mẫu cellulose hay không. Khả năng tiếp cận cellulose nên bị ảnh hưởng bởi độ tinh thể, nhưng cũng có khả năng bị ảnh hưởng bởi một số thông số khác, chẳng hạn như hàm lượng và phân bố lignin/hemicellulose, độ xốp và kích thước hạt. Với sự phụ thuộc vào phương pháp đo CI cellulose và bản chất phức tạp của sự tương tác của cellulase với cellulose vô định hình và tinh thể, chúng tôi cảnh báo không nên cố gắng tương quan những thay đổi tương đối nhỏ trong CI với những thay đổi trong khả năng tiêu hóa cellulose. Ngoài ra, dự đoán hiệu suất của cellulase dựa trên các mức chuyển đổi cellulose thấp có thể không bao gồm đủ sự tiêu hóa của thành phần tinh thể để có ý nghĩa.

Từ khóa


Tài liệu tham khảo

Hayashi J, Sufoka A, Ohkita J, Watanabe S: Confirmation of existence of cellulose III(I), III(II), IV(I), and IV(II) by x-ray method. J Polym Sci Polym Lett 1975, 13: 23-27. 10.1002/pol.1975.130130104

Gardiner ES, Sarko A: Packing analysis of carbohydrates and polysaccharides. 16. The crystal-structures of cellulose IV 1 and cellulose IV 11 . Can J Chem 1985, 63: 173-180. 10.1139/v85-027

Pérez S, Mazeau K: Conformations, structures, and morphologies of celluloses. In Polysaccharides: Structural diversity and functional versatility. 2nd edition. Edited by: S. Dumitriu. Marcel Dekker; 2005.

O'Sullivan A: Cellulose: the structure slowly unravel. Cellulose 1997, 4: 173-207. 10.1023/A:1018431705579

Zugenmaier P: Cellulose. In Crystalline Cellulose and Cellulose Derivatives: Characterization and structures. Springer Series in Wood Science. Berlin, Heidelberg: Springer-Verlag; 2008:101-174.

Wilkie JS: Carl Nägeli and the fine structure of living matter. Nature 1961, 190: 1145-1150. 10.1038/1901145a0

Meyer KH, Misch L: Positions des atomes dans le nouveau modèle spatial de la cellulose. Helv Chim Acta 1937, 20: 232-244. 10.1002/hlca.19370200134

Atalla RH, Vanderhart DL: Native cellulose: a composite of two distinct crystalline forms. Science 1984, 223: 283-285. 10.1126/science.223.4633.283

Nisizawa K: Mode of action of cellulases. J Ferment Technol 1973, 51: 267-304.

Åkerholm M, Hinterstoisser B, Salmén L: Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy. Carbohydr Res 2004, 339: 569-578. 10.1016/j.carres.2003.11.012

Evans R, Newman RH, Roick UC: Changes in cellulose crystallinity during kraft pulping. Comparison of infrared, x-ray diffraction and solid state NMR results. Holzforschung 1995, 49: 498-504. 10.1515/hfsg.1995.49.6.498

Kataoka Y, Kondo T: FT-IR microscopic analysis of changing cellulose crystalline structure during wood cell wall formation. Macromolecules 1998, 31: 760-764. 10.1021/ma970768c

Schenzel K, Fischer S, Brendler E: New method for determining the degree of cellulose I crystallinity by means of FT Raman spectroscopy. Cellulose 2005, 12: 223-231. 10.1007/s10570-004-3885-6

He J, Cui S, Wang S-Y: Preparation and crystalline analysis of high-grade bamboo dissolving pulp for cellulose acetate. J Appl Polym Sci 2008, 107: 1029-1038. 10.1002/app.27061

Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Ståhl K: On the determination of crystallinity and cellulose content in plant fibres. Cellulose 2005, 12: 563-576. 10.1007/s10570-005-9001-8

Helbert W, Chanzy H, Husum TL, Schulein M, Ernst S: Fluorescent cellulose microfibrils as substrate for the detection of cellulase activity. Biomacromolecules 2003, 4: 481-487. 10.1021/bm020076i

Wang Y, Zhao YL, Deng YL: Effect of enzymatic treatment on cotton fiber dissolution in NaOH/urea solution at cold temperature. Carbohydr Polym 2008, 72: 178-184. 10.1016/j.carbpol.2007.08.003

Cao Y, Tan H: Study on crystal structures of enzyme-hydrolyzed cellulosic materials by X-ray diffraction. Enzyme Microb Tech 2005, 36: 314-317. 10.1016/j.enzmictec.2004.09.002

Segal L, Creely JJ, Martin AE Jr, Conrad CM: An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Tex Res J 1962, 29: 786-794. 10.1177/004051755902901003

Hult LE, Iversen T, Sugiyama J: Characterization of the supramolecular structure of cellulose in wood pulp fibres. Cellulose 2003, 10: 103-110. 10.1023/A:1024080700873

Garvey CJ, Parker IH, Simon GP: On the interpretation of X-ray diffraction powder patterns in terms of the nanostructure of cellulose I fibres. Macromol Chem Phys 2005, 206: 1568-1575. 10.1002/macp.200500008

Smith SO, Kustanovich I, Wu X, Peersen OB: Variable-amplitude cross-polarization MAS NMR. J Magn Reson 1994, 104: 334-339.

Newman RH: Homogeneity in cellulose crystallinity between samples of Pinus radiata wood. Holzforschung 2004, 58: 91-96. 10.1515/HF.2004.012

Space-group symmetry: International Tables for Crystallography. Volume A. 5th edition. Edited by: Hahn T. Dordrecht: Kluwer Academic Publishing; 2002.

Klug H, Alexander L: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. 2nd edition. New York: John Wiley & Sons; 1974.

Jenkins R, Snyder R: Introduction to x-ray powder diffractometry. In Chemical Analysis. Volume 138. New York: John Wiley & Sons; 1996.

Teeäär R, Serimaa R, Paakkarl T: Crystallinity of cellulose, as determined by CP/MAS NMR and XRD methods. Polym Bull 1987, 17: 231-237. 10.1007/BF00285355

Gümüskaya E, Usta M, Kirci H: The effects of various pulping conditions on crystalline structure of cellulose in cotton linters. Polym Degrad Stabil 2003, 81: 559-564. 10.1016/S0141-3910(03)00157-5

Ruland W: X-ray determination of crystallinity and diffuse disorder scattering. Acta Cryst 1961, 14: 1180-1185. 10.1107/S0365110X61003429

Atalla RH, Vanderhart DL: The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl Magn Reson 1999, 15: 1-19. 10.1016/S0926-2040(99)00042-9

Mansfield SD, Meder R: Cellulose hydrolysis - the role of monocomponent cellulases in crystalline cellulose degradation. Cellulose 2003, 10: 159-169. 10.1023/A:1024022710366

Larsson PT, Wickholm K, Iversen T: A CP/MAS C-13 NMR investigation of molecular ordering in celluloses. Carbohydr Res 1997, 302: 19-25. 10.1016/S0008-6215(97)00130-4

Andersson S, Wikberg H, Pesonen E, Maunu S, Serimaa R: Studies of crystallinity of Scots pine and Norway spruce cellulose. Trees 2004, 18: 346-353.

Liitiä T, Maunu SL, Hortling B: Solid state NMR studies on cellulose crystallinity in fines and bulk fibres separated from refined kraft pulp. Holzforschung 2000, 54: 618-624. 10.1515/HF.2000.104

Liitiä T, Maunu SL, Hortling B, Tamminen T, Pekkala O, Varhimo A: Cellulose crystallinity and ordering of hemicelluloses in pine and birch pulps as revealed by solid-state NMR spectroscopic methods. Cellulose 2003, 10: 307-316. 10.1023/A:1027302526861

Zhao H, Kwak JH, Wang Y, Franz JA, White JM, Holladay JE: Effects of crystallinity on dilute acid hydrolysis of cellulose by cellulose ball-milling study. Energy Fuels 2006, 20: 807-811. 10.1021/ef050319a

Pu Y, Ziemer C, Ragauskas AJ: CP/MAS 13C NMR analysis of cellulase treated bleached softwood kraft pulp. Carbohydr Res 2006, 341: 591-597. 10.1016/j.carres.2005.12.012

Hult EL, Larsson PT, Iversen T: A comparative CP/MAS 13C-NMR study of cellulose structure in spruce wood and kraft pulp. Cellulose 2000, 7: 35-55. 10.1023/A:1009236932134

Hori R, Wada M: The thermal expansion of cellulose II and III II crystals. Cellulose 2006, 13: 281-290. 10.1007/s10570-005-9038-8

Rowe RC, McKillop AG, Bray D: The effect of batch and source variation on the crystallinity of microcrystalline cellulose. Int J Pharm 1994, 101: 169-172. 10.1016/0378-5173(94)90087-6

Landin M, Martinezpacheco R, Gomezamoza JL, Souto C, Concheiro A, Rowe RC: Effect of country of origin on the properties of microcrystalline cellulose. Int J Pharm 1993, 91: 123-131. 10.1016/0378-5173(93)90331-9

Castellan A, Ruggiero R, Frollini E, Ramos LA, Chirat C: Studies on fluorescence of cellulosics. Holzforschung 2007, 61: 504-508. 10.1515/HF.2007.090

Dadi A, Schall C, Varanasi S: Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl Biochem Biotechnol 2007, 136-140: 407-421. 10.1007/s12010-007-9068-9

El-Sakhawy M, Hassan ML: Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydr Polym 2007, 67: 1-10. 10.1016/j.carbpol.2006.04.009

Vyas S, Pradhan SD, Pavaskar NR, Lachke A: Differential thermal and thermogravimetric analyses of bound water content in cellulosic substrates and its significance during cellulose hydrolysis by alkaline active fungal cellulases. Appl Biochem Biotechnol 2004, 118: 177-188. 10.1385/ABAB:118:1-3:177

Granja PL, Pouysegu L, Petraud M, De Jeso B, Baquey C, Barbosa MA: Cellulose phosphates as biomaterials. I. Synthesis and characterization of highly phosphorylated cellulose gels. J Appl Polym Sci 2001, 82: 3341-3353. 10.1002/app.2193

Heng PWS, Liew CV, Soh JLP: Pre-formulation studies on moisture absorption in microcrystalline cellulose using differential thermo-gravimetric analysis. Chemical & Pharmaceutical Bulletin 2004, 52: 384-390. 10.1248/cpb.52.384

Marson GA, El Seoud OA: Cellulose dissolution in lithium chloride/N,N-dimethylacetamide solvent system: relevance of kinetics of decrystallization to cellulose derivatization under homogeneous solution conditions. J Polym Sci Polym Chem 1999, 37: 3738-3744. 10.1002/(SICI)1099-0518(19991001)37:19<3738::AID-POLA11>3.0.CO;2-R

Gama FM, Mota M: Enzymatic hydrolysis of cellulose. 1. Relationship between kinetics and physico-chemical parameters. Biocatal Biotransform 1997, 15: 221-236. 10.3109/10242429709103511

Hsu JC, Penner MH: Preparation and utilization of cellulose substrates regenerated after treatment with hydrochloric acid. J Agr Food Chem 1991, 39: 1444-1447. 10.1021/jf00008a016

Zhang S, Winter WT, Stipanovic AJ: Water-activated cellulose-based electrorheological fluids. Cellulose 2005, 12: 135-144. 10.1007/s10570-004-0345-2

Jumaa M, El Saleh F, Hassan I, Muller BW, Kleinebudde P: Influence of cellulose type on the properties of extruded pellets. Part I. Physicochemical characterisation of the cellulose types after homogenisation. Colloid Polym Sci 2000, 278: 597-607. 10.1007/s003960000292

Nakai Y, Fukuoka E, Nakajima S, Hasegawa J: Crystallinity and physical characteristics of microcrystalline cellulose. Chem Pharmaceut Bull 1977, 25: 96-101.

Ek R, Gustafsson C, Nutt A, Iversen T, Nyström C: Cellulose powder from Cladophora sp . algae. J Mol Recogn 1998, 11: 263-265. 10.1002/(SICI)1099-1352(199812)11:1/6<263::AID-JMR437>3.0.CO;2-G

Fan LT, Lee YH, Beardmore DH: Mechanism of the enzymatic hydrolysis of cellulose: Effect of major structural features of cellulose on enzymatic hydrolysis. Biotechnol Bioeng 1980, 23: 177-199. 10.1002/bit.260220113

Chen Y, Stipanovic AJ, Winter WT, Wilson DB, Kim YJ: Effect of digestion by pure cellulases on crystallinity and average chain length for bacterial and microcrystalline celluloses. Cellulose 2007, 14: 283-293. 10.1007/s10570-007-9115-2

Wang L, Zhang Y, Gao P, Shi D, Liu H, Gao H: Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis. Biotechnol Bioeng 2006, 93: 443-456. 10.1002/bit.20730

Buschle-Diller G, Fanter C, Loth F: Structural changes in hemp fibers as a result of enzymatic hydrolysis with mixed enzyme systems. Text Res J 1999, 69: 244-251. 10.1177/004051759906900403

Mansfield SD, de Jong E, Stephens RS, Saddler JN: Physical characterization of enzymatically modified kraft pulp fibers. J Biotechnol 1997, 57: 205-216. 10.1016/S0168-1656(97)00100-4

Zhang YHP, Cui JB, Lynd LR, Kuang LR: A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: Evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules 2006, 7: 644-648. 10.1021/bm050799c

Dasari R, Berson R: The effect of particle size on hydrolysis reaction rates and rheological properties in cellulosic slurries. Appl Biochem Biotechnol 2007, 137: 289-299. 10.1007/s12010-007-9059-x

Zhang YHP, Lynd LR: Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnol Bioeng 2004, 88: 797-824. 10.1002/bit.20282

Peters LE, Walker LP, Wilson DB, Irwin DC: The impact of initial particle-size on the fragmentation of cellulose by the cellulases of Thermomonospora-fusca. Bioresource Technol 1991, 35: 313-319. 10.1016/0960-8524(91)90130-C

Walker LP, Wilson DB, Irwin DC, McQuire C, Price M: Fragmentation of cellulose by the major Thermomonospora-fusca Cellulases, Trichoderma reesei CBHI, and their mixtures. Biotechnol Bioeng 1992, 40: 1019-1026. 10.1002/bit.260400905

Dong XM, Revol JF, Gray DG: Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 1998, 5: 19-32. 10.1023/A:1009260511939

Fleming K, Gray DG, Matthews S: Cellulose crystallites. Chem Eur 2001, 7: 1831-1835. 10.1002/1521-3765(20010504)7:9<1831::AID-CHEM1831>3.0.CO;2-S

Andersen N, Johansen K, Michelsen M, Stenby E, Krogh K, Olsson M: Hydrolysis of cellulose using mono-component enzymes shows synergy during hydrolysis of phosphoric acid swollen cellulose (PASC), but competition on Avicel. Enzyme Microb Technol 2008, 42: 362-370. 10.1016/j.enzmictec.2007.11.018

Szijártó N, Siika-aho M, Tenkanen M, Alapuranen M, Vehmaanpera J, Reczeya K, Viikari L: Hydrolysis of amorphous and crystalline cellulose by heterologously produced cellulases of Melanocarpus albomyces. J Biotechnol 2008, 136: 140-147. 10.1016/j.jbiotec.2008.05.010

Tomme P, Vantilbeurgh H, Pettersson G, Vandamme J, Vandekerckhove J, Knowles J, Teeri T, Claeyssens M: Studies of the cellulolytic system of Trichoderma reesei QM 9414 - Analysis of domain function in two cellobiohydrolases by limited proteolysis. Eur J Biochem 1988, 170: 575-581. 10.1111/j.1432-1033.1988.tb13736.x

Schroeder LR, Gentile VM, Atalla RH: Nondegradative preparation of amorphous cellulose. J Wood Chem Tech 1986, 6: 1-14. 10.1080/02773818608085213