Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production
Tóm tắt
Từ khóa
Tài liệu tham khảo
Air Transport Action Group. Beginner’s Guide to Aviation Biofuels. 2011.
International Civil Aviation Organization. Present and future trends in aircraft noise and emissions (Assembly 38th Session No. Working paper). 2013.
Buxton N. COP 21 Charades: spin, Lies and Real Hope in Paris. Globalizations. 2016;7731:1–4.
International Air Transport Association. IATA 2015 Report on Alternative Fuels. 2014.
International Civil Aviation Organization. Resolution A39-3: Consolidated statement of continuing ICAO policies and practices related to environmental protection—Global Market-based Measure (MBM) scheme (39th general assembly). 2016.
de Jong S, Hoefnagels R, Faaij A, Slade R, Mawhood R, Junginger M. The feasibility of short-term production strategies for renewable jet fuels—a comprehensive techno-economic comparison. Biofuel Bioprod Bioref. 2015;9:778–800.
Pearlson M, Wollersheim C, Hileman J. A techno-economic review of hydroprocessed renewable esters and fatty acids for jet fuel production. Biofuels Bioprod Bioref. 2013;7:89–96.
Klein-Marcuschamer D, Turner C, Allen M, Gray P, Dietzgen RG, Gresshoff PM, et al. Technoeconomic analysis of renewable aviation fuel from microalgae, Pongamia pinnata, and sugarcane. Biofuels Bioprod Biorefining. 2013;7:416–28.
Hileman JI, Ortiz DS, Bartis JT, Wong HM, Donohoo PE, Weiss MA, et al. Near-term feasibility of alternative jet fuels. Santa Monica: RAND Corporation and Massachusetts Institute of Technology; 2009.
Mawhood R, Gazis E, de Jong S, Hoefnagels R, Slade R. Production pathways for renewable jet fuel: a review of commercialization status and future prospects. Biofuel Bioprod Bioref. 2016;10:462–84.
Atsonios K, Kougioumtzis M-A, Panopoulos KD, Kakaras E. Alternative thermochemical routes for aviation biofuels via alcohols synthesis: process modeling, techno-economic assessment and comparison. Appl Energy. 2015;138:346–66.
Edwards R, Larive J-F, Rickeard D, Weindorf W. Well-to-Wheels analysis of future automotive fuels and powertrains in the European context WELL-TO-TANK (WTT) Report. Version 4. 2014.
Hoefnagels R, Smeets E, Faaij A. Greenhouse gas footprints of different biofuel production systems. Renew Sustain Energy Rev. 2010;14:1661–94.
Intergovernmental Panel on Climate Change. Special report on renewable energy sources and climate change mitigation. 2011.
Wang M, Han J, Dunn JB, Cai H, Elgowainy A. Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use. Environ Res Lett. 2012;7:45905.
Hennecke AM, Faist M, Reinhardt J, Junquera V, Neeft J, Fehrenbach H. Biofuel greenhouse gas calculations under the European Renewable Energy Directive—a comparison of the BioGrace tool vs. the tool of the Roundtable on Sustainable Biofuels. Appl Energy. 2013;102:55–62.
Chum H, Warner E. Tools for greenhouse gas (GHG) assessment for biofuels: a comparison. http://ieabioenergy2015.org/fileadmin/veranstaltungen/2015/IEA_Bioenergy_Conference/S08-4_Chum.pdf2015 IEA Bioenergy Conf. Berlin, Oct. 27–29; 2015. Accessed 2016 Nov 10.
Cherubini F, Bird ND, Cowie A, Jungmeier G, Schlamadinger B, Woess-Gallasch S. Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resour Conserv Recycl. 2009;53:434–47.
Kendall A, Yuan J. Comparing life cycle assessments of different biofuel options. Curr Opin Chem Biol. 2013;17:439–43.
Wang M, Huo H, Arora S. Methods of dealing with co-products of biofuels in life-cycle analysis and consequent results within the US context. Energy Policy Elsevier. 2011;39:5726–36.
Stratton RW, Wong HM, Hileman JI. Quantifying variability in life cycle greenhouse gas inventories of alternative middle distillate transportation fuels. Environ Sci Technol. 2011;45:4637–44.
Bailis RE, Baka JE. Greenhouse gas emissions and land use change from Jatropha curcas-based jet fuel in Brazil. Environ Sci Technol. 2010;44:8684–91.
Carter N, Stratton R, Bredehoeft M, Hileman J. Energy and environmental viability of select alternative jet fuel pathways. 47th AIAA/ASME/SAE/ASEE Jt Propuls Conf Exhib 2011:AIAA 2011–5968.
Elgowainy A, Han J, Wang M, Carter N, Stratton R, Hileman J. Life-cycle analysis of alternative aviation fuels in GREET; 2012. pp. 1–76. https://greet.es.anl.gov/files/aviation-lca .
Shonnard DR, Williams L, Kalnes TN. Camelina-derived jet fuel and diesel: sustainable advanced biofuels. Environ Prog Sustain Energy. 2010;29:383–92.
Staples MD, Malina R, Olcay H, Pearlson MN, Hileman JI, Boies A, et al. Lifecycle greenhouse gas footprint and minimum selling price of renewable diesel and jet fuel from fermentation and advanced fermentation production technologies. Energy Environ Sci. 2014;7:1545–54.
Cox K, Renouf M, Dargan A, Turner C, Klein-Marcuschamer D. Environmental life cycle assessment (LCA) of aviation biofuel from microalgae, Pongamia pinnata, and sugarcane molasses. Biofuels, Bioprod Biorefin. 2014;8:579–93.
Han J, Elgowainy A, Cai H, Wang MQ. Life-cycle analysis of bio-based aviation fuels. Bioresour Technol. 2013;150:447–56.
Argonne National Laboratory. Greenhouse gases, regulated emissions, and energy use in transportation (GREET) GREET.net Computer Model. https://greet.es.anl.gov/index.php?content=greetdotnet2015 . Accessed 2 Feb 2016.
Argonne National Laboratory. Greenhouse gases, regulated emissions, and energy use in transportation (GREET) GREET_1_2015 Excel model. https://greet.es.anl.gov/greet_1_series2015 . Accessed 2 Feb 2016.
United Nations Framework Convention on Climate Change (UNFCCC). Report of the Conference of the Parties on its nineteenth session, held in Warsaw from 11 to 23 November 2013 Addendum. 2014.
Stratton RW, Wolfe PJ, Hileman JI. Impact of aviation Non-CO 2 combustion effects on the environmental feasibility of alternative jet fuels. Environ Sci Technol. 2011;45:10736–43.
Corporan E, Edwards T, Shafer L, Dewitt MJ, Klingshirn C, Zabarnick S, et al. Chemical, thermal stability, seal swell, and emissions studies of alternative jet fuels. Energy Fuels. 2011;25:955–66.
Bhagwan R, Habisreuther P, Zarzalis N, Turrini F. An experimental comparison of the emissions characteristics of standard jet A-1 and synthetic fuels. Flow Turbul Combust. 2014;92:865–84.
Beyersdorf A, Anderson B. An overview of the NASA alternative aviation fuel experiment (AAFEX). TAC-2 Proc. 2009. pp. 21–32.
Kendall A, Chang B, Sharpe B. Accounting for time-dependent effects in biofuel life cycle greenhouse gas emissions calculations. Environ Sci Technol. 2009;43:7142–7.
Dunn JB, Mueller S, Kwon H-Y, Wang MQ. Land-use change and greenhouse gas emissions from corn and cellulosic ethanol. Biotechnol Biofuels. 2013;6:51–64.
Davis SC, House JI, Diaz-Chavez RA, Molnar A, Valin H, DeLucia EH. How can land-use modelling tools inform bioenergy policies? Interface Focus. 2011;1:212–23.
Wicke B, Smeets E, Dornburg V, Vashev B, Gaiser T, Turkenburg W, et al. The global technical and economic potential of bioenergy from salt-affected soils. Energy Environ Sci. 2011;4:2669–81.
Wicke B, Verweij P, van Meijl H, van Vuuren DP, Faaij AP. Indirect land use change: review of existing models and strategies for mitigation. Biofuels. 2012;3:87–100.
Plevin RJ, Jones AD, Torn MS, Group R, Division ES, Berkeley L. The greenhouse gas emissions from indirect land use change are uncertain, but potentially much greater than previously estimated. Environ Sci Technol. 2010;44:8015–21.
Valin H, Peters D, Berg M van den, Frank S, Havlik P, Forsell N, et al. The land use change impact of biofuels consumed in the EU—quantification of area and greenhouse gas impacts (GLOBIOM report). 2015.
Edwards R, Mulligan D, Marelli L. Indirect land use change from increased biofuels demand. Ispra: EC Joint Research Centre; 2010.
Gerssen-Gondelach SJ, Wicke B, Faaij APC. GHG emissions and other environmental impacts of indirect land use change mitigation. GCB Bioenergy. 2016:1–18. doi: 10.1111/gcbb.12394 .
Ardente F, Cellura M. Economic allocation in life cycle assessment: the state of the art and discussion of examples. J Ind Ecol. 2012;16:387–98.
International Standards Organisation (ISO). ISO 14040:2006. Environmental management. Life cycle assessment. Principles and framework. 2006.
Huo H, Wang M, Bloyd C, Putsche V. Life-cycle assessment of energy use and greenhouse gas emissions of soybean-derived biodiesel and renewable fuels. Environ Sci Technol. 2009;43:750–6.
European Parliament and Council. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC (Text with EEA relevance). 2009.
Environmental Protection Agency. Regulation of fuels and fuel additives: Changes to renewable fuel standard program; Final Rule. 2010.
Allen DT, Allport C, Atkins K, Cooper JS, Dilmore RM, Draucker LC, et al. Framework and guidance for estimating greenhouse gas footprints for aviation fuels. Interim Report. 2009.
National Energy Technology Laboratory (NETL). Development of baseline data and analysis of life cycle greenhouse gas emissions of petroleum-based fuels. 2008.
Stratton RW, Wong HM, Hileman JI. Life cycle greenhouse gas emissions from alternative jet fuels. 2010.
European Commission. Study on actual GHG data for diesel, petrol, kerosene and natural gas. 2015.
BioGrace. BioGrace—excel based biofuel GHG calculations. Version 4d. http://www.biograce.net/home2015 . Accessed 9 July 2016.
Swanson RM, Satrio JA, Brown RC, Platon A, Hsu DD. Techno-economic analysis of biofuels production based on gasification; 2010. pp. 1–65. http://www.nrel.gov/docs/fy11osti/46587.pdf .
Tews IJ, Zhu Y, Drennan CV, Elliott D, Snowden-Swan LJ, Onarheim K, et al. Biomass direct liquefaction options: technoeconomic and life cycle assessment. Richland: Pacific Northwest National Laboratory; 2014.
Wright MM, Satrio JA, Brown RC, Daugaard DE, Hsu DD. Techno-economic analysis of biomass fast pyrolysis to transportation fuels. Fuels. 2010;89:S2–10.
Akhtar J, Amin NAS. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew Sustain Energy Rev. 2011;15:1615–24.
Feedipedia. Soybean meal. http://www.feedipedia.org/node/6742016 . Accessed 6 Sept 2016.
Cherian G. Camelina sativa in poultry diets: opportunities and challenges. Biofuel co-products as Livest. Feed Oppor Challenges. 2012. p. 303–10.
Wang M, Huo H. Fuel-cycle assessment of selected bioethanol production pathways in the United States; 2006. pp. 1–65. https://greet.es.anl.gov/files/2lli584z .
Han J, Dunn JB, Cai H, Elgowainy A, Wang MQ. Updated sugarcane parameters in GREET1 _ 2012, Second Revision. 2012.
Klein-Marcuschamer D, Turner C, Allen M, Grey P, Dietzgen R, Gresshoff P, et al. Technoeconomic analysis of renewable aviation fuel from microalgae, Pongamia pinnata, and sugarcane. Biofuels Bioprod Bioref. 2013;7:416–28.
Worldbank. Commodity Markets Pink Sheet. http://www.worldbank.org/en/research/commodity-markets . Accessed 30 Aug 2016.
Daioglou V. Greenhouse gas emission-curves for advanced biofuel supply chains. Role Biomass Climate Change Mitigation. (PhD thesis). Utrecht, The Netherlands; 2016. p. 46–67.
Reap J, Roman F, Duncan S, Bras B. A survey of unresolved problems in life cycle assessment. Part 2: impact assessment and interpretation. Int J Life Cycle Assess. 2008;13:374–88.
Kaufman AS, Meier PJ, Sinistore JC, Reinemann DJ. Applying life-cycle assessment to low carbon fuel standards-how allocation choices influence carbon intensity for renewable transportation fuels. Energy Policy. 2010;38:5229–41.
Seber G, Malina R, Pearlson MN, Olcay H, Hileman JI, Barrett SRH. Environmental and economic assessment of producing hydroprocessed jet and diesel fuel from waste oils and tallow. Biomass Bioenergy. 2014;67:108–18.
Li X, Mupondwa E. Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies. Sci Total Environ. 2014;481:17–26.
Agusdinata DB, Zhao F, Ileleji K, DeLaurentis D. Life cycle assessment of potential biojet fuel production in the United States. Environ Sci Technol. 2011;45:9133–43.
Wang W, Tao L, Markham J, Zhang Y, Tan E, Batan L, et al. Review of biojet fuel conversion technologies. Golden, CO: National Renewable Energy Laboratory; 2016. http://www.nrel.gov/docs/fy16osti/66291.pdf .
Capaz RS, Seabra JEA. Life cycle assessment of biojet fuels. In: Chuck CJ, editor. Biofuels for aviation: feedstocks, technology and implementation, Chap 12. Amsterdam: Academic Press; 2016. pp. 279–94.
Abella JP. Model to investigate energy and greenhouse gas implications of refining petroleum. Environ Sci Technol. 2012;46:13037–47.
Luckow P, Wise MA, Dooley JJ, Kim SH. Large-scale utilization of biomass energy and carbon dioxide capture and storage in the transport and electricity sectors under stringent CO2 concentration limit scenarios. Int J Greenh Gas Control. 2010;4:865–77.
van Vliet OPR, Faaij APC, Turkenburg WC. Fischer–Tropsch diesel production in a well-to-wheel perspective: a carbon, energy flow and cost analysis. Energy Convers Manag. 2009;50:855–76.
Möllersten K, Yan J, Moreira JR. Potential market niches for biomass energy with CO2 capture and storage—opportunities for energy supply with negative CO2 emissions. Biomass Bioenergy. 2003;25:273–85.
van Vuuren DP, Deetman S, van Vliet J, van den Berg M, van Ruijven BJ, Koelbl B. The role of negative CO2 emissions for reaching 2 C-insights from integrated assessment modelling. Clim Change. 2013;118:15–27.
Clarke L, Edmonds J, Krey V, Richels R, Rose S, Tavoni M. International climate policy architectures: overview of the EMF 22 International Scenarios. Energy Econ. 2009;31:S64–81.
Creutzig F, Ravindranath NH, Berndes G, Bolwig S, Bright RM, Cherubini F, et al. Bioenergy and climate change mitigation: an assessment. GCB Bioenergy. 2015;5:916–44.
Gerssen-Gondelach SJ, Saygin D, Wicke B, Patel MK, Faaij APC. Competing uses of biomass: assessment and comparison of the performance of bio-based heat, power, fuels and materials. Renew Sustain Energy Rev. 2014;40:964–98.
Schäfer AW, Evans AD, Reynolds TG, Dray L. Costs of mitigating CO2 emissions from passenger aircraft. Nat Clim Chang. 2015;9:1–7.
World Bank. State and Trends of Carbon Pricing. 2015.
Luckow P, Stanton EA, Fields S, Ong W, Biewald B, Jackson S, et al. Spring 2016 National Carbon Dioxide Price Forecast. 2016.
Schjolset S. The MSR : impact on market balance and prices. 2014. http://ec.europa.eu/clima/events/docs/0094/thomson_reuters_point_carbon_en.pdfThomsonReuters . Accessed 29 Aug 2016.
International Civil Aviation Organization. Offsets for International Aviation Emissions. 2012.
Holtsmark B. Harvesting in boreal forests and the biofuel carbon debt. Clim Change. 2012;112:415–28.
Lee DS, Fahey DW, Forster PM, Newton PJ, Wit RCN, Lim LL, et al. Aviation and global climate change in the 21st century. Atmos Environ. 2009;43:3520–37.
Caiazzo F, Malina R, Staples MD, Wolfe PJ, Yim SHL, Barrett SRH. Quantifying the climate impacts of albedo changes due to biofuel production: a comparison with biogeochemical effects. Environ Res Lett. 2014;9:24015.
Cai H, Wang J, Feng Y, Wang M, Qin Z, Dunn JB. Consideration of land use change-induced surface albedo effects in life-cycle analysis of biofuels. Energy Environ Sci. 2016;9:2855–67.
Cai H, Wang MQ. Consideration of black carbon and primary organic carbon emissions in life-cycle analysis of Greenhouse gas emissions of vehicle systems and fuels. Environ Sci Technol. 2014;48:12445–53.
Staples MD, Olcay H, Malina R, Trivedi P, Pearlson MN, Strzepek K, et al. Water consumption footprint and land requirements of large-scale alternative diesel and jet fuel production. Environ Sci Technol. 2013;47:12557–65.
Lampert DJ, Cai H, Elgowainy A. Wells to wheels: water consumption for transportation fuels in the United States. Energy Environ Sci. 2016;9:787–802.
Sustainable Aviation Fuel Users Group. Our commitment to sustainable options. http://www.safug.org/safug-pledge/ . Accessed 9 Dec 2015.
Sustainable Aviation Fuel Users Group. Global policy statement indirect land use change (ILUC). http://www.safug.org/assets/docs/iluc-global-proposition.pdf2013 . Accessed 29 June 2016.
Commercial Aviation Alternative Fuels Initiative. Fuel Readiness Level (FRL). http://www.caafi.org/information/pdf/frl_caafi_jan_2010_v16.pdf2010 . Accessed 28 July 2016.