Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana
Tóm tắt
Second-generation biofuels are generally produced from the polysaccharides in the lignocellulosic plant biomass, mainly cellulose. However, because cellulose is embedded in a matrix of other polysaccharides and lignin, its hydrolysis into the fermentable glucose is hampered. The senesced inflorescence stems of a set of 20
Although lignin is a key polymer providing the strength necessary for the plant’s ability to grow upward, a reduction in lignin content down to 64% of the wild-type level in
Although the lignin content had the main effect on saccharification, also other cell wall factors could be engineered to potentially increase the cell wall processability, such as the galactose content. Our results contribute to a better understanding of the effect of lignin perturbations on plant cell wall composition and its influence on saccharification yield, and provide new potential targets for genetic improvement.
Từ khóa
Tài liệu tham khảo
Hisano H, Nandakumar R, Wang Z-Y: Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cell Dev Biol-Plant. 2009, 45: 306-313. 10.1007/s11627-009-9219-5.
Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart NC: Plants to power: bioenergy to fuel the future. Trends Plant Sci. 2008, 13: 421-429. 10.1016/j.tplants.2008.06.001.
Chen F, Dixon RA: Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol. 2007, 25: 759-761. 10.1038/nbt1316.
Endler A, Persson S: Cellulose synthases and synthesis in Arabidopsis. Mol Plant. 2011, 4: 199-211. 10.1093/mp/ssq079.
Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R: Hemicelluloses for fuel ethanol: a review. Bioresour Technol. 2010, 101: 4775-4800. 10.1016/j.biortech.2010.01.088.
Scheller HV, Ulvskov P: Hemicelluloses. Annu Rev Plant Biol. 2010, 61: 263-289. 10.1146/annurev-arplant-042809-112315.
Boerjan W, Ralph J, Baucher M: Lignin biosynthesis. Annu Rev Plant Biol. 2003, 54: 519-546. 10.1146/annurev.arplant.54.031902.134938.
Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W: Lignin biosynthesis and structure. Plant Physiol. 2010, 153: 895-905. 10.1104/pp.110.155119.
Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD: Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science. 2007, 315: 804-807. 10.1126/science.1137016.
Cook CM, Daudi A, Millar DJ, Bindschedler LV, Khan S, Bolwell GP, Devoto A: Transcriptional changes related to secondary wall formation in xylem of transgenic lines of tobacco altered for lignin or xylan content which show improved saccharification. Phytochemistry. 2012, 74: 79-89.
Fornalé S, Capellades M, Encina A, Wang K, Irar S, Lapierre C, Ruel K, Joseleau J-P, Berenguer J, Puigdomènech P, Rigau J, Caparrós-Ruiz D: Altered lignin biosynthesis improves cellulosic bioethanol production in transgenic maize plants down-regulated for cinnamyl alcohol dehydrogenases. Mol Plant. 2012, 5: 817-830. 10.1093/mp/ssr097.
Xu B, Escamilla-Treviño LL, Sathitsuksanoh N, Shen Z, Shen H, Zhang Y-HP, Dixon RA, Zhao B: Silencing of 4-coumarate:coenzyme A ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production. New Phytol. 2011, 192: 611-625. 10.1111/j.1469-8137.2011.03830.x.
Fu C, Xiao X, Xi Y, Ge Y, Chen F, Bouton J, Dixon RA, Wang Z-Y: Downregulation of cinnamyl alcohol dehydrogenase (CAD) leads to improved saccharification efficiency in switchgrass. BioEnergy Res. 2011, 4: 153-164. 10.1007/s12155-010-9109-z.
Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M, Chen F, Foston M, Ragauskas A, Bouton J, Dixon RA, Wang Z-Y: Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci USA. 2011, 108: 3803-3808. 10.1073/pnas.1100310108.
Jung JH, Fouad WM, Vermerris W, Gallo M, Altpeter F: RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass. Plant Biotechnol J. 2012, 10: 1067-1076. 10.1111/j.1467-7652.2012.00734.x.
Dien BS, Sarath G, Pedersen JF, Sattler SE, Chen H, Funnell-Harris DL, Nichols NN, Cotta MA: Improved sugar conversion and ethanol yield for forage sorghum (Sorghum bicolor L. Moench) lines with reduced lignin contents. BioEnergy Res. 2009, 2: 153-164. 10.1007/s12155-009-9041-2.
Bouvier d’Yvoire M, Bouchabke-Coussa O, Voorend W, Antelme S, Cézard L, Legée F, Lebris P, Legay S, Whitehead C, McQueen-Mason SJ, Gomez LD, Jouanin L, Lapierre C, Sibout R: Disruspting the cinnamyl alcohol dehydrogenase 1 gene (BdCAD1) leads to altered lignification and improved saccharification in Brachypodium distachyon. Plant J. 2013, 73: 496-508. 10.1111/tpj.12053.
Vanholme R, Van Acker R, Boerjan W: Potential of Arabidopsis systems biology to advance the biofuel field. Trends Biotechnol. 2010, 28: 543-547. 10.1016/j.tibtech.2010.07.008.
Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, Tuskan GA, Wyman CE: Lignin content in natural Populus variants affects sugar release. Proc Natl Acad Sci USA. 2011, 108: 6300-6305. 10.1073/pnas.1009252108.
Mansfield SD, Kang K-Y, Chapple C: Designed for deconstruction – poplar trees altered in cell wall lignification improve the efficacy of bioethanol production. New Phytol. 2012, 194: 91-101. 10.1111/j.1469-8137.2011.04031.x.
Min D, Li Q, Jameel H, Chiang V, Chang HM: The cellulase-mediated saccharification on wood derived from transgenic low-lignin lines of black cottonwood (Populus trichocarpa). Appl Biochem Biotechnol. 2012, 168: 947-955. 10.1007/s12010-012-9833-2.
Papa G, Varanasi P, Sun L, Cheng G, Stavila V, Holmes B, Simmons BA, Adani F, Singh S: Exploring the effect of different plant lignin content and composition on ionic liquid pretreatment efficiency and enzymatic saccharification of Eucalyptus globulus L. mutants. Bioresour Technol. 2012, 117: 352-359.
Li X, Ximenes E, Kim Y, Slininger M, Meilan R, Ladisch M, Chapple C: Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment. Biotechnol Biofuels. 2010, 3: 27-10.1186/1754-6834-3-27.
Dien BS, Miller DJ, Hector RE, Dixon RA, Chen F, McCaslin M, Reisen P, Sarath G, Cotta MA: Enhancing alfalfa conversion efficiencies for sugar recovery and ethanol production by altering lignin composition. Bioresour Technol. 2011, 102: 6479-6486. 10.1016/j.biortech.2011.03.022.
Harris D, Stork J, Debolt S: Genetic modification in cellulose-synthase reduces crystallinity and improves biochemical conversion to fermentable sugar. GCB Bioenergy. 2009, 1: 51-61. 10.1111/j.1757-1707.2009.01000.x.
Xu N, Zhang W, Ren S, Liu F, Zhao C, Liao H, Xu Z, Huang J, Li Q, Tu Y, Yu B, Wang Y, Jiang J, Qin J, Peng L: Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Biotechnol Biofuels. 2012, 5: 58-10.1186/1754-6834-5-58.
Lee C, Teng Q, Huang W, Zhong R, Ye Z-H: Down-regulation of PoGT47C expression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulase. Plant Cell Physiol. 2009, 50: 1075-1089. 10.1093/pcp/pcp060.
Mortimer JC, Miles GP, Brown DM, Zhang Z, Segura MP, Weimar T, Yu X, Seffen KA, Stephens E, Turner SR, Dupree P: Absence of branches from xylan in Arabidopsis gux mutants reveals potential for simplification of lignocellulosic biomass. Proc Natl Acad Sci USA. 2010, 107: 17409-17414. 10.1073/pnas.1005456107.
Hu W-J, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai C-J, Chiang VL: Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol. 1999, 17: 808-812. 10.1038/11758.
Li L, Zhou Y, Cheng X, Sun J, Marita JM, Ralph J, Chiang VL: Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc Natl Acad Sci USA. 2003, 100: 4939-4944. 10.1073/pnas.0831166100.
Jouanin L, Goujon T, de Nadaï V, Martin M-T, Mila I, Vallet C, Pollet B, Yoshinaga A, Chabbert B, Petit-Conil M, Lapierre C: Lignification in transgenic poplars with extremely reduced caffeic acid O-methyltransferase activity. Plant Physiol. 2000, 123: 1363-1373. 10.1104/pp.123.4.1363.
Vanholme R, Storme V, Vanholme B, Sundin L, Christensen JH, Goeminne G, Halpin C, Rohde A, Morreel K, Boerjan W: A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis. Plant Cell. 2012, 24: 3506-3529. 10.1105/tpc.112.102574.
Schilmiller AL, Stout J, Weng J-K, Humphreys J, Ruegger MO, Chapple C: Mutations in the cinnamate 4-hydroxylase gene impact metabolism, growth and development in Arabidopsis. Plant J. 2009, 60: 771-782. 10.1111/j.1365-313X.2009.03996.x.
Mir Derikvand M, Sierra JB, Ruel K, Pollet B, Do C-T, Thévenin J, Buffard D, Jouanin L, Lapierre C: Redirection of the phenylpropanoid pathway to feruloyl malate in Arabidopsis mutants deficient for cinnamoyl-CoA reductase 1. Planta. 2008, 227: 943-956. 10.1007/s00425-007-0669-x.
Dence CW: Lignin determination. Methods in Lignin Chemistry. Edited by: Lin SY, Dence CW. 1992, Berlin: Springer-Verlag (Wimmer R (Series Editor): Springer Series in Wood Science), 33-61. 2
Van Doorsselaere J, Baucher M, Chognot E, Chabbert B, Tollier M-T, Petit-Conil M, Leplé J-C, Pilate G, Cornu D, Monties B, Van Montagu M, Inzé D, Boerjan W, Jouanin L: A novel lignin in poplar trees with a reduced caffeic acid/5-hydroxyferulic acid O-methyltransferase activity. Plant J. 1995, 8: 855-864. 10.1046/j.1365-313X.1995.8060855.x.
Ralph J, Lapierre C, Marita JM, Kim H, Lu F, Hatfield RD, Ralph S, Chapple C, Franke R, Hemm MR, Van Doorsselaere J, Sederoff RR, O’Malley DM, Scott JT, MacKay JJ, Yahiaoui N, Boudet A-M, Pean M, Pilate G, Jouanin L, Boerjan W: Elucidation of new structures in lignins of CAD- and COMT-deficient plants by NMR. Phytochemistry. 2001, 57: 993-1003. 10.1016/S0031-9422(01)00109-1.
Morreel K, Ralph J, Lu F, Goeminne G, Busson R, Herdewijn P, Goeman JL, Van der Eycken J, Boerjan W, Messens E: Phenolic profiling of caffeic acid O-methyltransferase-deficient poplar reveals novel benzodioxane oligolignols. Plant Physiol. 2004, 136: 4023-4036. 10.1104/pp.104.049312.
Lu F, Marita JM, Lapierre C, Jouanin L, Morreel K, Boerjan W, Ralph J: Sequencing around 5-hydroxyconiferyl alcohol-derived units in caffeic acid O-methyltransferase-deficient poplar lignins. Plant Physiol. 2010, 153: 569-579. 10.1104/pp.110.154278.
Lapierre C, Pilate G, Pollet B, Mila I, Leplé J-C, Jouanin L, Kim H, Ralph J: Signatures of cinnamyl alcohol dehydrogenase deficiency in poplar lignins. Phytochemistry. 2004, 65: 313-321. 10.1016/j.phytochem.2003.11.007.
Kim H, Ralph J, Lu F, Pilate G, Leplé J-C, Pollet B, Lapierre C: Identification of the structure and origin of thioacidolysis marker compounds for cinnamyl alcohol dehydrogenase deficiency in angiosperms. J Biol Chem. 2002, 277: 47412-47419. 10.1074/jbc.M208860200.
Sibout R, Eudes A, Pollet B, Goujon T, Mila I, Granier F, Séguin A, Lapierre C, Jouanin L: Expression pattern of two paralogs encoding cinnamyl alcohol dehydrogenases in Arabidopsis. Isolation and characterization of the corresponding mutants. Plant Physiol. 2003, 132: 848-860. 10.1104/pp.103.021048.
Ralph J, Kim H, Lu F, Grabber JH, Leplé J-C, Berrio-Sierra J, Mir Derikvand M, Jouanin L, Boerjan W, Lapierre C: Identification of the structure and origin of a thioacidolysis marker compound for ferulic acid incorporation into angiosperm lignins (and an indicator for cinnamoyl CoA reductase deficiency). Plant J. 2008, 53: 368-379.
Leplé J-C, Dauwe R, Morreel K, Storme V, Lapierre C, Pollet B, Naumann A, Kang K-Y, Kim H, Ruel K, Lefèbvre A, Joseleau J-P, Grima-Pettenati J, De Rycke R, Andersson-Gunnerås S, Erban A, Fehrle I, Petit-Conil M, Kopka J, Polle A, Messens E, Sundberg B, Mansfield SD, Ralph J, Pilate G, Boerjan W: Downregulation of cinnamoyl-coenzyme A reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell. 2007, 19: 3669-3691. 10.1105/tpc.107.054148.
DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F: Colorimetric method for determination of sugars and related substances. Anal Chem. 1956, 28: 350-356. 10.1021/ac60111a017.
Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S-I, Lee YC: Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal Biochem. 2005, 339: 69-72. 10.1016/j.ab.2004.12.001.
Pauly M, Keegstra K: Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J. 2008, 54: 559-568. 10.1111/j.1365-313X.2008.03463.x.
Bonawitz ND, Chapple C: The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu Rev Genet. 2010, 44: 337-363. 10.1146/annurev-genet-102209-163508.
Ehlting J, Büttner D, Wang Q, Douglas CJ, Somssich IE, Kombrink E: Three 4-coumarate:coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. Plant J. 1999, 19: 9-20. 10.1046/j.1365-313X.1999.00491.x.
Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou Y-H, Yu J-Q, Chen Z: Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol. 2010, 153: 1526-1538. 10.1104/pp.110.157370.
Dixon RA, Chen F, Guo D, Parvathi K: The biosynthesis of monolignols: a “metabolic grid”, or independent pathways to guaiacyl and syringyl units?. Phytochemistry. 2001, 57: 1069-1084. 10.1016/S0031-9422(01)00092-9.
Jones L, Ennos AR, Turner SR: Cloning and characterization of irregular xylem4 (irx4): a severely lignin-deficient mutant of Arabidopsis. Plant J. 2001, 26: 205-216. 10.1046/j.1365-313x.2001.01021.x.
Prashant S, Srilakshmi Sunita M, Pramod S, Gupta RK, Anil Kumar S, Rao Karumanchi S, Rawal SK, Kavi Kishor PB: Down-regulation of Leucaena leucocephala cinnamoyl CoA reductase (LlCCR) gene induces significant changes in phenotype, soluble phenolic pools and lignin in transgenic tobacco. Plant Cell Rep. 2011, 30: 2215-2231. 10.1007/s00299-011-1127-6.
Meyer K, Shirley AM, Cusumano JC, Bell-Lelong DA, Chapple C: Lignin monomer composition is determined by the expression of a cytochrome P450-dependent monooxygenase in Arabidopsis. Proc Natl Acad Sci USA. 1998, 95: 6619-6623. 10.1073/pnas.95.12.6619.
Lee Y, Chen F, Gallego-Giraldo L, Dixon RA, Voit EO: Integrative analysis of transgenic alfalfa (Medicago sativa L.) suggests new metabolic control mechanisms for monolignol biosynthesis. PLoS Comput Biol. 2011, 7: e1002047-10.1371/journal.pcbi.1002047.
Zhou R, Jackson L, Shadle G, Nakashima J, Temple S, Chen F, Dixon RA: Distinct cinnamoyl CoA reductases involved in parallel routes to lignin in Medicago truncatula. Proc Natl Acad Sci USA. 2010, 107: 17803-17808. 10.1073/pnas.1012900107.
Vanholme R, Morreel K, Darrah C, Oyarce P, Grabber JH, Ralph J, Boerjan W: Metabolic engineering of novel lignin in biomass crops. New Phytol. 2012, 196: 978-1000. 10.1111/j.1469-8137.2012.04337.x.
Rohde A, Morreel K, Ralph J, Goeminne G, Hostyn V, De Rycke R, Kushnir S, Van Doorsselaere J, Joseleau J-P, Vuylsteke M, Van Driessche G, Van Beeumen J, Messens E, Boerjan W: Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. Plant Cell. 2004, 16: 2749-2771. 10.1105/tpc.104.023705.
Dauwe R, Morreel K, Goeminne G, Gielen B, Rohde A, Van Beeumen J, Ralph J, Boudet A-M, Kopka J, Rochange SF, Halpin C, Messens E, Boerjan W: Molecular phenotyping of lignin-modified tobacco reveals associated changes in cell-wall metabolism, primary metabolism, stress metabolism and photorespiration. Plant J. 2007, 52: 263-285. 10.1111/j.1365-313X.2007.03233.x.
Shi C, Koch G, Ouzunova M, Wenzel G, Zein I, Lübberstedt T: Comparison of maize brown-midrib isogenic lines by cellular UV-microspectrophotometry and comparative transcript profiling. Plant Mol Biol. 2006, 62: 697-714. 10.1007/s11103-006-9049-3.
Gallego-Giraldo L, Escamilla-Trevino L, Jackson LA, Dixon RA: Salicylic acid mediates the reduced growth of lignin down-regulated plants. Proc Natl Acad Sci USA. 2011, 108: 20814-20819. 10.1073/pnas.1117873108.
Laskar DD, Jourdes M, Patten AM, Helms GL, Davin LB, Lewis NG: The Arabidopsis cinnamoyl CoA reductase irx4 mutant has a delayed but coherent (normal) program of lignification. Plant J. 2006, 48: 674-686. 10.1111/j.1365-313X.2006.02918.x.
Stackpole DJ, Vaillancourt RE, Alves A, Rodrigues J, Potts BM: Genetic variation in the chemical components of Eucalyptus globulus wood. G3 Genes|Genomes|Genet. 2011, 1: 151-159.
Chang XF, Chandra R, Berleth T, Beatson RP: Rapid, microscale, acetyl bromide-based method for high-throughput determination of lignin content in Arabidopsis thaliana. J Agric Food Chem. 2008, 56: 6825-6834. 10.1021/jf800775f.
Robinson AR, Mansfield SD: Rapid analysis of poplar lignin monomer composition by a streamlined thioacidolysis procedure and near-infrared reflectance-based prediction modeling. Plant J. 2009, 58: 706-714. 10.1111/j.1365-313X.2009.03808.x.
Yue F, Lu F, Sun R-C, Ralph J: Syntheses of lignin-derived thioacidolysis monomers and their uses as quantitation standards. J Agric Food Chem. 2012, 60: 922-928. 10.1021/jf204481x.
Foster CE, Martin TM, Pauly M: Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass). Part II: Carbohydrates. J Vis Exp. 2010, 37: e1837-
Fox A, Black GE, Fox K, Rostovtseva S: Determination of carbohydrate profiles of Bacillus anthracis and Bacillus cereus including identification of O-methyl methylpentoses by using gas chromatography–mass spectrometry. J Clin Microbiol. 1993, 31: 887-894.
Brown DM, Goubet F, Wong VW, Goodacre R, Stephens E, Dupree P, Turner SR: Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis. Plant J. 2007, 52: 1154-1168. 10.1111/j.1365-313X.2007.03307.x.
Xiao Z, Storms R, Tsang A: Microplate-based filter paper assay to measure total cellulase activity. Biotechnol Bioeng. 2004, 88: 832-837. 10.1002/bit.20286.
Osborne JW: Improving your data transformations: applying the Box-Cox transformation. Practical Assess Res Eval. 2010, 15: