Biogerontology
Công bố khoa học tiêu biểu
Sắp xếp:
Higher DNA repair activity is related with longer replicative life span in mammalian embryonic fibroblast cells
Biogerontology - Tập 12 - Trang 565-579 - 2011
Since the detailed comparison of DNA repair activities among mammalian embryonic fibroblast cells with different replicative life spans has not been investigated, we tested DNA repair activities in embryonic fibroblast cells derived from mammals including human, dog, rat, and mouse. The cell viability after treatment of four DNA damage agents appeared to be decreased in the order of human embryonic fibroblasts (HEFs) > dog embryonic fibroblasts (DEFs) > rat embryonic fibroblasts (REFs) > mouse embryonic fibroblasts (MEFs) although statistical significance was lacking. The amounts of strand breaks and AP (apurinic/apyrimidinic) sites also appear to be decreased in the order of HEFs > DEFs > REFs ≥ MEFs after treatment of DNA damage agents. The DNA repair activities and rates including base excision repair (BER), nucleotide excision repair (NER) and double-strand break repair (DSBR) including non-homologous end-joining (NHEJ) decreased again in the order of HEFs > DEFs > REFs ≥ MEFs. BER and NHEJ activities in 3% O2 also decreased in the order of HEFs > DEFs > REFs > MEFs. This order in DNA repair activity appears to be coincident with that of replicative life span of fibroblasts and that of life span of mammals. These results indicate that higher DNA repair activity is related with longer replicative life span in embryonic fibroblast cells.
Oxford Textbook of Geriatric Medicine. By J. Grimley Evans, T. Franklin Williams, B. Lynn, Beattie, J.-P. Michel and G.K. Wilcock (eds)
Biogerontology - Tập 2 - Trang 139-139 - 2001
Reasons for the degeneration of ageing skeletal muscle: a central role for IGF-1 signalling
Biogerontology - Tập 3 - Trang 19-24 - 2002
This paper examines two major possibilities for the striking loss of skeletal muscle mass and strength that occurs in very old animals and humans. It is concluded that muscle regeneration is not significantly impaired with age. Instead, it seems that individual myofibres undergo atrophy, with selective death of the fast type 2B myofibres, due to the combined effects of many age-related changes the main causes being: nutrition(under-nutrition and lack of vitamin D),decreased hormone levels (e.g growth hormone, testosterone), reduced physical activity, and a loss of nerves that innervate the muscles. The discussion focusses on the central role of a local muscle form of insulin-like growth factor-I (IGF-I) in muscle hypertrophy, atrophy and motor neurone loss. Reduced IGF-Isignalling is involved in muscle atrophy and results from decreased muscle exercise, reduced growth hormone and insulin levels, reduced vitamin D, and treatment with drugs like corticosteroids, dexamethasone, and cyclosporin. In addition, elevated levels of inflammatory cytokines like TNF-α and IL-6can cause muscle wasting (cachexia) although this is usually associated with disease, andTNF-α may also act (at least in part) by inhibiting IGF-I signalling. The possible clinical prevention of age-related muscle wasting (and associated motor neurone loss) by the locally acting muscle isoform of IGF-I is discussed.
Gene expression hallmarks of cellular ageing
Biogerontology - Tập 19 - Trang 547-566 - 2018
Ageing leads to dramatic changes in the physiology of many different tissues resulting in a spectrum of pathology. Nonetheless, many lines of evidence suggest that ageing is driven by highly conserved cell intrinsic processes, and a set of unifying hallmarks of ageing has been defined. Here, we survey reports of age-linked changes in basal gene expression across eukaryotes from yeast to human and identify six gene expression hallmarks of cellular ageing: downregulation of genes encoding mitochondrial proteins; downregulation of the protein synthesis machinery; dysregulation of immune system genes; reduced growth factor signalling; constitutive responses to stress and DNA damage; dysregulation of gene expression and mRNA processing. These encompass widely reported features of ageing such as increased senescence and inflammation, reduced electron transport chain activity and reduced ribosome synthesis, but also reveal a surprising lack of gene expression responses to known age-linked cellular stresses. We discuss how the existence of conserved transcriptomic hallmarks relates to genome-wide epigenetic differences underlying ageing clocks, and how the changing transcriptome results in proteomic alterations where data is available and to variations in cell physiology characteristic of ageing. Identification of gene expression events that occur during ageing across distant organisms should be informative as to conserved underlying mechanisms of ageing, and provide additional biomarkers to assess the effects of diet and other environmental factors on the rate of ageing.
An inverse-Warburg effect and the origin of Alzheimer’s disease
Biogerontology - Tập 13 - Trang 583-594 - 2012
Glycolysis and oxidative phosphorylation (OxPhos) are the two major mechanisms involved in brain energetics. In this article we propose that the sporadic forms of Alzheimer’s disease (AD) are driven by age-related damage to macromolecules and organelles which results in the following series of dynamic processes. (1) Metabolic alteration: Upregulation of OxPhos activity by dysfunctional neurons. (2) Natural selection: Competition for the limited energy substrates between neurons with normal OxPhos activity [Type (1)] and dysfunctional neurons with increased OxPhos [Type (2)]. (3) Propagation, due to the fact that Type (1) neurons are outcompeted for limited substrate by Type (2) neurons which, because of increased ROS production, eventually become dysfunctional and die. Otto Warburg, in his studies of the origin of cancer, discovered that most cancer cells are characterized by an increase in glycolytic activity—a property which confers a selective advantage in oncologic environments. Accordingly, we propose the term “inverse-Warburg effect” to describe increased OxPhos activity—a property which we propose confers a selective advantage in neuronal environments, and which we hypothesize to underlie the shift from normal to pathological aging and subsequent AD.
The dietary restriction effect in C. elegans and humans: is the worm a one-millimeter human?
Biogerontology - Tập 7 - Trang 127-133 - 2006
Dietary restriction (DR) lengthens life span in wide range of vertebrate and invertebrate species. The molecular mechanism by which DR increases life span and the universality of its effects (and hence its applicability to humans) are currently debated in gerontology. This article addresses these two problems from both an experimental perspective, using the nematode C. elegans as a model system, and a theoretical viewpoint, by appealing to recent mechanistic and evolutionary models of aging. Molecular mechanisms of aging are analysed by contrasting the rate of living/oxidative stress hypothesis with the metabolic stability/longevity hypothesis, a new model of aging which postulates that the robustness of metabolic networks, rather than metabolic rate per se, is the major determinant of aging. Studies of food-restricted worms are shown to be consistent with the metabolic stability/longevity hypothesis. The universality of the effects of DR is addressed in terms of directionality theory, an evolutionary model, which is based on the analytical fact that the robustness or the stability of demographic networks determines Darwinian fitness. Directionality theory, in conjunction with the metabolic stability hypothesis, predicts that DR will have negligible effects on equilibrium species (late age of sexual maturity, small size of progeny sets and broad reproductive span) and large effects on opportunistic species (early age of maturity, large size of progeny sets, narrow reproductive span). Empirical studies using C. elegans (an opportunistic species) and computational studies on human populations (an equilibrium species) are shown to be consistent with these predictions.
Alzheimer’s as a metabolic disease
Biogerontology - Tập 14 - Trang 641-649 - 2013
Empirical evidence indicates that impaired mitochondrial energy metabolism is the defining characteristic of almost all cases of Alzheimer’s disease (AD). Evidence is reviewed supporting the general hypothesis that the up-regulation of OxPhos activity, a metabolic response to mitochondrial dysregulation, drives the cascade of events leading to AD. This mode of metabolic alteration, called the Inverse Warburg effect, is postulated as an essential compensatory mechanism of energy production to maintain the viability of impaired neuronal cells. This article appeals to the inverse comorbidity of cancer and AD to show that the amyloid hypothesis, a genetic and neuron-centric model of the origin of sporadic forms of AD, is not consistent with epidemiological data concerning the age-incidence rates of AD. A view of Alzheimer’s as a metabolic disease—a condition consistent with mitochondrial dysregulation and the Inverse Warburg effect, will entail a radically new approach to diagnostic and therapeutic strategies.
Investigation of anti-aging and anti-infection properties of Jingfang Granules using the Caenorhabditis elegans model
Biogerontology - - Trang 1-13 - 2023
Jingfang Granule (JFG), a traditional Chinese medicine, is frequently employed in clinical settings for the treatment of infectious diseases. Nevertheless, the anti-aging and anti-infection effects of JFG remain uncertain. In the present study, these effects were evaluated using the Caenorhabditis elegans (C. elegans) N2 as a model organism. The results demonstrated that JFG significantly increased the median lifespan of C. elegans by 31.2% at a dosage of 10 mg/mL, without any discernible adverse effects, such as alterations in the pharyngeal pumping rate or nematode motility. Moreover, JFG notably increased oviposition by 11.3%. Subsequent investigations revealed that JFG enhanced oxidative stress resistance in C. elegans by reducing reactive oxygen species levels and significantly improved survival rates in nematodes infected with Pseudomonas aeruginosa ATCC 9027. These findings suggest that JFG delays reproductive senescence in C. elegans and protects them from oxidative stress, thereby extending their lifespan. Additionally, JFG improves the survival of P. aeruginosa-infected nematodes. Consequently, JFG has potential as a candidate for the development of anti-aging and anti-infection functional medicines.
Antioxidants can extend lifespan of Brachionus manjavacas (Rotifera), but only in a few combinations
Biogerontology - Tập 13 Số 3 - Trang 261-275 - 2012
Tổng số: 998
- 1
- 2
- 3
- 4
- 5
- 6
- 100