Phenotypical and morphological changes in the thymic microenvironment from ageing mice

Biogerontology - Tập 10 - Trang 311-322 - 2008
Danielle Aw1, Frances Taylor-Brown1, Kate Cooper1, Donald B. Palmer1
1Department of Veterinary Basic Sciences, Infection & Immunity and Genes & Development Groups, Royal Veterinary College, London, UK

Tóm tắt

The thymus is crucial for T-cell output and the age-associated involution of this organ, is thought to have a major impact in the decline in immunity that is seen in later life. The mechanism that underlines thymic involution is not known, however, we have evidence to suggest that this is may be due to changes in the thymic microenvironment. To further test this hypothesis, we quantified the in situ changes to markers that identify cortical and medullary thymic epithelial cells. This analysis revealed an age-dependent decline in cortical and medullary markers together with an increase in Notch and Delta expression, in older mice, as judged by immunohistochemistry. This was accompanied by alterations of the archetypal staining patterns and three dimensional analysis revealed changes in the morphology of the thymic microenvironment. These studies suggest that there are age-associated alterations in the thymic microenvironment, which may therefore play a role in thymic involution.

Tài liệu tham khảo

Akiyama T, Maeda S, Yamane S et al (2005) Dependence of self-tolerance on TRAF6-directed development of thymic stroma. Science 308:248–251. doi:10.1126/science.1105677 Anderson G, Jenkinson EJ (2001) Lymphostromal interactions in thymic development and function. Nat Rev Immunol 1:31–40. doi:10.1038/35095500 Anderson G, Lane PJ, Jenkinson EJ (2007) Generating intrathymic microenvironments to establish T-cell tolerance. Nat Rev Immunol 7:954–963. doi:10.1038/nri2187 Aspinall R, Andrew D (2000) Thymic atrophy in the mouse is a soluble problem of the thymic environment. Vaccine 18:1629–1637. doi:10.1016/S0264-410X(99)00498-3 Aw D, Silva AB, Palmer DB (2007) Immunosenescence: emerging challenges for an ageing population. Immunology 120:435–446. doi:10.1111/j.1365-2567.2007.02555.x Aw D, Silva AB, Maddick M et al (2008) Architectural changes in the thymus of aging mice. Aging Cell 7:158–167. doi:10.1111/j.1474-9726.2007.00365.x Bartek J, Vojtesek B, Staskova Z et al (1991) A series of 14 new monoclonal antibodies to keratins: characterization and value in diagnostic histopathology. J Pathol 164:215–224. doi:10.1002/path.1711640306 Bertho JM, Demarquay C, Moulian N et al (1997) Phenotypic and immunohistological analyses of the human adult thymus: evidence for an active thymus during adult life. Cell Immunol 179:30–40. doi:10.1006/cimm.1997.1148 Beverly LJ, Ascano JM, Capobianco AJ (2006) Expression of JAGGED1 in T-lymphocytes results in thymic involution by inducing apoptosis of thymic stromal epithelial cells. Genes Immun 7:476–486. doi:10.1038/sj.gene.6364318 Blackburn CC, Manley NR, Palmer DB et al (2002) One for all and all for one: thymic epithelial stem cells and regeneration. Trends Immunol 23:391–395. doi:10.1016/S1471-4906(02)02265-2 Boyd RL, Tucek CL, Godfrey DI et al (1993) The thymic microenvironment. Immunol Today 14:445–459. doi:10.1016/0167-5699(93)90248-J Burkly L, Hession C, Ogata L et al (1995) Expression of relB is required for the development of thymic medulla and dendritic cells. Nature 373:531–536. doi:10.1038/373531a0 Derbinski J, Gabler J, Brors B et al (2005) Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J Exp Med 202:33–45. doi:10.1084/jem.20050471 Farr AG, Anderson SK (1985) Epithelial heterogeneity in the murine thymus: fucose-specific lectins bind medullary epithelial cells. J Immunol 134:2971–2977 Farr A, Nelson A, Truex J et al (1991) Epithelial heterogeneity in the murine thymus: a cell surface glycoprotein expressed by subcapsular and medullary epithelium. J Histochem Cytochem 39:645–653 Gray DH, Seach N, Ueno T et al (2006) Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood 108:3777–3785. doi:10.1182/blood-2006-02-004531 Gui J, Zhu X, Dohkan J et al (2007) The aged thymus shows normal recruitment of lymphohematopoietic progenitors but has defects in thymic epithelial cells. Int Immunol 19:1201–1211. doi:10.1093/intimm/dxm095 Heino M, Peterson P, Sillanpaa N et al (2000) RNA and protein expression of the murine autoimmune regulator gene (Aire) in normal, RelB-deficient and in NOD mouse. Eur J Immunol 30:1884–1893. doi: 10.1002/1521-4141(200007)30:7<1884::AID-IMMU1884>3.0.CO;2-P Inman CF, Rees LE, Barker E et al (2005) Validation of computer-assisted, pixel-based analysis of multiple-colour immunofluorescence histology. J Immunol Methods 302:156–167. doi:10.1016/j.jim.2005.05.005 Izon DJ, Punt JA, Xu L et al (2001) Notch1 regulates maturation of CD4+ and CD8+ thymocytes by modulating TCR signal strength. Immunity 14:253–264. doi:10.1016/S1074-7613(01)00107-8 Klug DB, Carter C, Crouch E et al (1998) Interdependence of cortical thymic epithelial cell differentiation and T-lineage commitment. Proc Natl Acad Sci USA 95:11822–11827. doi:10.1073/pnas.95.20.11822 Kont V, Laan M, Kisand K et al (2008) Modulation of Aire regulates the expression of tissue-restricted antigens. Mol Immunol 45:25–33. doi:10.1016/j.molimm.2007.05.014 Kraal G, Breel M, Janse M et al (1986) Langerhans’ cells, veiled cells, and interdigitating cells in the mouse recognized by a monoclonal antibody. J Exp Med 163:981–997. doi:10.1084/jem.163.4.981 Li L, Hsu HC, Grizzle WE et al (2003) Cellular mechanism of thymic involution. Scand J Immunol 57:410–422. doi:10.1046/j.1365-3083.2003.01206.x Mackall CL, Punt JA, Morgan P et al (1998) Thymic function in young/old chimeras: substantial thymic T cell regenerative capacity despite irreversible age-associated thymic involution. Eur J Immunol 28:1886–1893. doi: 10.1002/(SICI)1521-4141(199806)28:06<1886::AID-IMMU1886>3.0.CO;2-M Marenzana M, De Souza RL, Chenu C (2007) Blockade of beta-adrenergic signaling does not influence the bone mechano-adaptive response in mice. Bone 41:206–215. doi:10.1016/j.bone.2007.04.184 Miller JF (1961) Immunological function of the thymus. Lancet 2:748–749. doi:10.1016/S0140-6736(61)90693-6 Miller JF (2002) The discovery of thymus function and of thymus-derived lymphocytes. Immunol Rev 185:7–14. doi:10.1034/j.1600-065X.2002.18502.x Min D, Panoskaltsis-Mortari A, Kuro OM et al (2007) Sustained thymopoiesis and improvement in functional immunity induced by exogenous KGF administration in murine models of aging. Blood 109:2529–2537. doi:10.1182/blood-2006-08-043794 Montecino-Rodriguez E, Dorshkind K (2006) Evolving patterns of lymphopoiesis from embryogenesis through senescence. Immunity 24:659–662. doi:10.1016/j.immuni.2006.06.001 Montecino-Rodriguez E, Johnson A, Dorshkind K (1996) Thymic stromal cells can support B cell differentiation from intrathymic precursors. J Immunol 156:963–967 Muller KM, Luedecker CJ, Udey MC et al (1997) Involvement of E-cadherin in thymus organogenesis and thymocyte maturation. Immunity 6:257–264. doi:10.1016/S1074-7613(00)80328-3 Nehls M, Kyewski B, Messerle M et al (1996) Two genetically separable steps in the differentiation of thymic epithelium. Science 272:886–889. doi:10.1126/science.272.5263.886 Ortman CL, Dittmar KA, Witte PL et al (2002) Molecular characterization of the mouse involuted thymus: aberrations in expression of transcription regulators in thymocyte and epithelial compartments. Int Immunol 14:813–822. doi:10.1093/intimm/dxf042 Pawelec G, Akbar A, Caruso C et al (2005) Human immunosenescence: is it infectious? Immunol Rev 205:257–268. doi:10.1111/j.0105-2896.2005.00271.x Radtke F, Wilson A, Mancini SJ et al (2004) Notch regulation of lymphocyte development and function. Nat Immunol 5:247–253. doi:10.1038/ni1045 Ritter MA, Palmer DB (1999) The human thymic microenvironment: new approaches to functional analysis. Semin Immunol 11:13–21. doi:10.1006/smim.1998.0148 Sano S, Takahama Y, Sugawara T et al (2001) Stat3 in thymic epithelial cells is essential for postnatal maintenance of thymic architecture and thymocyte survival. Immunity 15:261–273. doi:10.1016/S1074-7613(01)00180-7 Santos M, Rio P, Ruiz S et al (2005) Altered T cell differentiation and Notch signaling induced by the ectopic expression of keratin K10 in the epithelial cells of the thymus. J Cell Biochem 95:543–558. doi:10.1002/jcb.20406 Schuurman HJ, Kuper CF, Kendall MD (1997) Thymic microenvironment at the light microscopic level. Microsc Res Tech 38:216–226. doi: 10.1002/(SICI)1097-0029(19970801)38:3<216::AID-JEMT3>3.0.CO;2-K Silva AB, Aw D, Palmer DB (2006) Evolutionary conservation of neuropeptide expression in the thymus of different species. Immunology 118:131–140. doi:10.1111/j.1365-2567.2006.02351.x Small M, Kraal G (2003) In vitro evidence for participation of DEC-205 expressed by thymic cortical epithelial cells in clearance of apoptotic thymocytes. Int Immunol 15:197–203. doi:10.1093/intimm/dxg024 Sutherland JS, Goldberg GL, Hammett MV et al (2005) Activation of thymic regeneration in mice and humans following androgen blockade. J Immunol 175:2741–2753 Taub DD, Longo DL (2005) Insights into thymic aging and regeneration. Immunol Rev 205:72–93. doi:10.1111/j.0105-2896.2005.00275.x van Ewijk W, Wang B, Hollander G et al (1999) Thymic microenvironments, 3-D versus 2-D? Semin Immunol 11:57–64. doi:10.1006/smim.1998.0158 Watanabe Y, Naiki M, Wilson T et al (1993) Thymic microenvironmental abnormalities and thymic selection in NZB.H-2bm12 mice. J Immunol 150:4702–4712 Zamisch M, Moore-Scott B, Su DM et al (2005) Ontogeny and regulation of IL-7-expressing thymic epithelial cells. J Immunol 174:60–67 Zhu X, Gui J, Dohkan J et al (2007) Lymphohematopoietic progenitors do not have a synchronized defect with age-related thymic involution. Aging Cell 6:663–672. doi:10.1111/j.1474-9726.2007.00325.x