CTT1 overexpression increases life span of calorie-restricted Saccharomyces cerevisiae deficient in Sod1
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adamis PDB, Panek AD, Eleutherio E (2007) Vacuolar compartmentation of the cadmium-glutathione complex protects Saccharomyces cerevisiae from mutagenesis. Toxicol Lett 173:1–7
Aebi H (1964) Catalase in vitro. Methods Enzymol 105:114–118
Agarwal S, Sharma S, Agrawal V, Roy N (2005) Caloric restriction augments ROS defense in S. cerevisiae by a Sir2p independent mechanism. Free Radic Res. 39:55–62
Bar G (2002) The quantitative measurement of H2O2 generation in isolated mitochondria. J Bioenerg Biomemb. 34:227–233
Botstein D, Fink GR (2011) Yeast: an experimental organism for 21st Century biology. Genetics 189:695–704
Carmona-Gutierrez D, Büttner S (2014) The many ways to age for a single yeast cell. Yeast 31(8):289–298
Carter WO, Narayanan PK, Robinson JP (1994) Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells. J Leukoc Biol 55:253–258
Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325:201–204
Dalle-Donnea I, Rossib R, Giustarinib D, Milzania A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–38
de Moraes LMP, Astolfi-filho S, Oliver SG (1995) Development of yeast strains for the efficient utilisation of starch: evaluation of constructs that express—amylase and glucoamylase separately or as bifunctional fusion proteins. Appl Microbiol Biotechnol 43:1067–1076
del Valle LG (2011) Oxidative stress in aging: theoretical outcomes and clinical evidences in humans. Biomed Aging Pathol 1:1–7
Demir AB, Koc A (2010) Assessment of chronological lifespan dependent molecular damages in yeast lacking mitochondrial antioxidant genes. Biochem Biophys Res Commun 400:106–110
Fabrizio P, Longo VD (2003) The chronological life span of Saccharomyces cerevisiae. Aging Cell 2:73–81
Fabrizio P, Longo VD (2008) Chronological aging-induced apoptosis in yeast. Biochim Biophys Acta 1783:1280–1285
Fernandes PN, Mannarino SC, Silva CG, Pereira MD, Panek AD, Eleutherio ECA (2007) Oxidative stress response in eukaryotes: effect of glutathione, superoxide dismutase and catalase on adaptation to peroxide and menadione stresses in Saccharomyces cerevisiae. Redox Rep 12:236–244
Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15:1583–1606
Gietz D, St Jean A, Woods RA, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425–1435
Gomes DS, Pereira MD, Panek AD, Andrade LR, Eleutherio E (2008) Apoptosis as a mechanism for removal of mutated cells of Saccharomyces cerevisiae: the role of Grx2 under cadmium exposure. Biochim Biophys Acta 1780:160–166
Harman D (2006) Free radical theory of aging: an update increasing the functional life span. Ann NY Acad Sci 1067:1–12
Harris N, Bachler M, Costa V, Mollapour M, Moradas-Ferreira P, Piper P (2005) Overexpressed Sod1pacts either to reduce or to increase the life spans and stress resistance of yeast, depending on whether it is Cu(2+)-deficient or an active Cu, Zn-superoxide dismutase. Aging Cell 4:41–52
Herker E, Jungwirth H, Lehmann KA, Maldener C, Fröhlich KU, Wissing S, Büttner S, Fehr M, Sigrist S, Madeo F (2004) Chronological aging leads to apoptosis in yeast. J Cell Biol 164:501–507
Herrero E, Ros J, Bellí G, Cabiscol E (2008) Redox control and oxidative stress in yeast cells. Biochim Biophys Acta 1780:1217–1235
Huberts DEW, González J, Lee SS, Litsios A, Hubmann G, Wit EC, Heinemann EC (2014) Calorie restriction does not elicit a robust extension of replicative lifespan in Saccharomyces cerevisiae. PNAS 111:11727–11731
Khurana V, Lindquist S (2010) Modelling neurodegeneration in Saccharomyces cerevisiae: why cook with baker’s yeast? Nat Rev 11:436–449
Liu XD, Thiele DJ (1996) Oxidative stress induced heat shock factor phosphorylation and HSF-dependent activation of yeast metallothionein gene transcription. Genes Dev 10:592–603
Longo VD, Gralla EB, Valentine JS (1996) Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo. J Biol Chem 271:12275–12280
Mannarino SC, Amorim MA, Pereira MD, Moradas-Ferreira P, Panek AD, Costa V, Eleutherio EC (2008) Glutathione is necessary to ensure benefits of calorie restriction during aging in Saccharomyces cerevisiae. Mech Aging Dev 129:700–705
Mannarino SC, Vilela LF, Brasil AA, Aranha JN, Moradas-Ferreira P, Pereira MD, Costa V, Eleutherio EC (2011) Requirement of glutathione for Sod1 activation during lifespan extension. Yeast 28:19–25
Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, Herbert RL, Longo DL, Allison DB, Young JE, Bryant M, Barnard D, Ward WF, Qi W, Ingram DK, de Cabo R (2012) Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489:318–321
Mecocci P, Polidori MC, Troiano L, Cherubini A, Cecchetti R, Pini G, Straatman M, Monti D, Stahl W, Sies H, Franceschi C, Senin U (2000) Plasma antioxidants and longevity: a study on healthy centenarians. Free Radic Biol Med 28:1243–1248
Mesquita A, Weinberger M, Silva A, Sampaio-Marques B, Almeida B, Leão C, Costa V, Rodrigues F, Burhans WC, Ludovico P (2010) Caloric restriction or catalase inactivation extends yeast chronological lifespan by inducing H2O2 and superoxide dismutase activity. Proc Natl Acad Sci USA 107:15123–15128
Miao L, St. Clair DK (2009) Regulation of superoxide dismutase genes: implications in diseases. Free Radic Biol Med 47:344–356
Mirisola MG, Braun RJ, Petranovic D (2013) Approaches to study yeast cell aging and death. FEMS Yeast Res 14:109–118
Ozbay B, Dulger H (2002) Lipid peroxidation and antioxidant enzymes in Turkish population: relation to age, gender, exercise, and smoking. Tohoku J Exp Med 197:119–124
Parrella E, Longo VD (2008) The chronological life span of Saccharomyces cerevisiae to study mitochondrial dysfunction and disease. Methods 46(4):256–262
Pereira MD, Herdeiro RS, Fernandes PN, Eleutherio E, Panek AD (2003) Targets of oxidative stress in yeast sod mutants. Biochim Biophys Acta 1620:245–251
Poljsak B (2011) Strategies for reducing or preventing the generation of oxidative stress. Oxid Med Cell Longev 2011:194586
Radak Z, Zhao Z, Goto S, Koltai E (2011) Age-associated neurodegeneration and oxidative damage to lipids, proteins and DNA. Mol Asp Med 32:305–315
Reverter-Branchat G, Cabiscol E, Tamarit J, Sorolla MA, Angeles de la Torre M, Ros J (2007) Chronological and replicative life-span extension in Saccharomyces cerevisiae by increased dosage of alcohol dehydrogenase 1. Microbiology 153:3667–3676
Ristow M, Schmeisser S (2011) Extending life span by increasing oxidative stress. Free Radic Biol Med 51:327–336
Rodrigues-Pousada C, Menezes RA, Pimentel C (2010) The Yap family and its role in stress response. Yeast 27:245–258
Sambrook J, Maniatis T, Fritsch EF (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York
Sheu SS, Nauduri D, Anders MW (2006) Targeting antioxidants to mitochondria: a new therapeutic direction. Biochim Biophys Acta 1762:256–265
Shimokawa I, Chiba T, Yamaza H, Komatsu T (2008) Longevity genes: insights from calorie restriction and genetic longevity models. Mol Cells 30:427–435
Srinivasan C, Liba A, Imlay JA, Valentine JS, Gralla EB (2000) Yeast lacking superoxide dismutase(s) show elevated levels of “free iron” as measured by whole cell electron paramagnetic resonance. J Biol Chem 275:29187–29192
Steels EL, Learmonth RP, Watson K (1994) Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiology 140:569–576