Advanced Energy Materials
SCOPUS (2011-2023)SCIE-ISI
1614-6832
1614-6840
Đức
Cơ quản chủ quản: WILEY-V C H VERLAG GMBH , Wiley-VCH Verlag
Các bài báo tiêu biểu
Lithium (Li)‐ion batteries (LIB) have governed the current worldwide rechargeable battery market due to their outstanding energy and power capability. In particular, the LIB's role in enabling electric vehicles (EVs) has been highlighted to replace the current oil‐driven vehicles in order to reduce the usage of oil resources and generation of CO2 gases. Unlike Li, sodium is one of the more abundant elements on Earth and exhibits similar chemical properties to Li, indicating that Na chemistry could be applied to a similar battery system. In the 1970s‐80s, both Na‐ion and Li‐ion electrodes were investigated, but the higher energy density of Li‐ion cells made them more applicable to small, portable electronic devices, and research efforts for rechargeable batteries have been mainly concentrated on LIB since then. Recently, research interest in Na‐ion batteries (NIB) has been resurrected, driven by new applications with requirements different from those in portable electronics, and to address the concern on Li abundance. In this article, both negative and positive electrode materials in NIB are briefly reviewed. While the voltage is generally lower and the volume change upon Na removal or insertion is larger for Na‐intercalation electrodes, compared to their Li equivalents, the power capability can vary depending on the crystal structures. It is concluded that cost‐effective NIB can partially replace LIB, but requires further investigation and improvement.
Photocatalysis is considered as one of the promising routes to solve the energy and environmental crises by utilizing solar energy. Graphitic carbon nitride (g‐C3N4) has attracted worldwide attention due to its visible‐light activity, facile synthesis from low‐cost materials, chemical stability, and unique layered structure. However, the pure g‐C3N4 photocatalyst still suffers from its low separation efficiency of photogenerated charge carriers, which results in unsatisfactory photocatalytic activity. Recently, g‐C3N4‐based heterostructures have become research hotspots for their greatly enhanced charge carrier separation efficiency and photocatalytic performance. According to the different transfer mechanisms of photogenerated charge carriers between g‐C3N4 and the coupled components, the g‐C3N4‐based heterostructured photocatalysts can be divided into the following categories: g‐C3N4‐based conventional type II heterojunction, g‐C3N4‐based Z‐scheme heterojunction, g‐C3N4‐based p–n heterojunction, g‐C3N4/metal heterostructure, and g‐C3N4/carbon heterostructure. This review summarizes the recent significant progress on the design of g‐C3N4‐based heterostructured photocatalysts and their special separation/transfer mechanisms of photogenerated charge carriers. Moreover, their applications in environmental and energy fields, e.g., water splitting, carbon dioxide reduction, and degradation of pollutants, are also reviewed. Finally, some concluding remarks and perspectives on the challenges and opportunities for exploring advanced g‐C3N4‐based heterostructured photocatalysts are presented.
In the past decade, there have been exciting developments in the field of lithium ion batteries as energy storage devices, resulting in the application of lithium ion batteries in areas ranging from small portable electric devices to large power systems such as hybrid electric vehicles. However, the maximum energy density of current lithium ion batteries having topatactic chemistry is not sufficient to meet the demands of new markets in such areas as electric vehicles. Therefore, new electrochemical systems with higher energy densities are being sought, and metal‐air batteries with conversion chemistry are considered a promising candidate. More recently, promising electrochemical performance has driven much research interest in Li‐air and Zn‐air batteries. This review provides an overview of the fundamentals and recent progress in the area of Li‐air and Zn‐air batteries, with the aim of providing a better understanding of the new electrochemical systems.
In recent years, tremendous research effort has been aimed at increasing the energy density of supercapacitors without sacrificing high power capability so that they reach the levels achieved in batteries and at lowering fabrication costs. For this purpose, two important problems have to be solved: first, it is critical to develop ways to design high performance electrode materials for supercapacitors; second, it is necessary to achieve controllably assembled supercapacitor types (such as symmetric capacitors including double‐layer and pseudo‐capacitors, asymmetric capacitors, and Li‐ion capacitors). The explosive growth of research in this field makes this review timely. Recent progress in the research and development of high performance electrode materials and high‐energy supercapacitors is summarized. Several key issues for improving the energy densities of supercapacitors and some mutual relationships among various effecting parameters are reviewed, and challenges and perspectives in this exciting field are also discussed. This provides fundamental insight into supercapacitors and offers an important guideline for future design of advanced next‐generation supercapacitors for industrial and consumer applications.
Organolead halide perovskites currently are the new front‐runners as light absorbers in hybrid solar cells, as they combine efficiencies passing already 20% with deposition temperatures below 100 °C and cheap solution‐based fabrication routes. Long‐term stability remains a major obstacle for application on an industrial scale. Here, it is demonstrated that significant decomposition effects already occur during annealing of a methylammonium lead triiode perovskite at 85 °C even in inert atmosphere thus violating international standards. The observed behavior supports the view of currently used perovskite materials as soft matter systems with low formation energies, thus representing a major bottleneck for their application, especially in countries with high average temperatures. This result can trigger a broader search for new perovskite families with improved thermal stability.
As the world is marching into the era of the internet of things (IoTs) and artificial intelligence, the most vital development for hardware is a multifunctional array of sensing systems, which forms the foundation of the fourth industrial revolution toward an intelligent world. Given the need for mobility of these multitudes of sensors, the success of the IoTs calls for distributed energy sources, which can be provided by solar, thermal, wind, and mechanical triggering/vibrations. The triboelectric nanogenerator (TENG) for mechanical energy harvesting developed by Z.L. Wang's group is one of the best choices for this energy for the new era, since triboelectrification is a universal and ubiquitous effect with an abundant choice of materials. The development of self‐powered active sensors enabled by TENGs is revolutionary compared to externally powered passive sensors, similar to the advance from wired to wireless communication. In this paper, the fundamental theory, experiments, and applications of TENGs are reviewed as a foundation of the energy for the new era with four major application fields: micro/nano power sources, self‐powered sensors, large‐scale blue energy, and direct high‐voltage power sources. A roadmap is proposed for the research and commercialization of TENG in the next 10 years.
There are growing concerns over the environmental, climate, and health impacts caused by using non‐renewable fossil fuels. The utilization of green energy, including solar and wind power, is believed to be one of the most promising alternatives to support more sustainable economic growth. In this regard, lithium‐ion batteries (LIBs) can play a critically important role. To further increase the energy and power densities of LIBs, silicon anodes have been intensively explored due to their high capacity, low operation potential, environmental friendliness, and high abundance. The main challenges for the practical implementation of silicon anodes, however, are the huge volume variation during lithiation and delithiation processes and the unstable solid‐electrolyte interphase (SEI) films. Recently, significant breakthroughs have been achieved utilizing advanced nanotechnologies in terms of increasing cycle life and enhancing charging rate performance due partially to the excellent mechanical properties of nanomaterials, high surface area, and fast lithium and electron transportation. Here, the most recent advance in the applications of 0D (nanoparticles), 1D (nanowires and nanotubes), and 2D (thin film) silicon nanomaterials in LIBs are summarized. The synthetic routes and electrochemical performance of these Si nanomaterials, and the underlying reaction mechanisms are systematically described.
The currently commercialized lithium‐ion batteries have allowed for the creation of practical electric vehicles, simultaneously satisfying many stringent milestones in energy density, lifetime, safety, power, and cost requirements of the electric vehicle economy. The next wave of consumer electric vehicles is just around the corner. Although widely adopted in the vehicle market, lithium‐ion batteries still require further development to sustain their dominating roles among competitors. In this review, the authors survey the state‐of‐the‐art active electrode materials and cell chemistries for automotive batteries. The performance, production, and cost are included. The advances and challenges in the lithium‐ion battery economy from the material design to the cell and the battery packs fitting the rapid developing automotive market are discussed in detail. Also, new technologies of promising battery chemistries are comprehensively evaluated for their potential to satisfy the targets of future electric vehicles.