Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries

Advanced Energy Materials - Tập 2 Số 7 - Trang 710-721 - 2012
Sung‐Wook Kim1, Dong‐Hwa Seo1, Xiaohua Ma2, Gerbrand Ceder2,3,4, Kisuk Kang1,3,4
1Department of Materials Science and Engineering, Seoul National University, Seoul 151-742, Republic of Korea
2Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 20139-4307, United States of America
3Gerbrand Ceder, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 20139-4307, United States of America
4Kisuk Kang, Department of Materials Science and Engineering, Seoul National University, Seoul 151-742, Republic of Korea.

Tóm tắt

Abstract

Lithium (Li)‐ion batteries (LIB) have governed the current worldwide rechargeable battery market due to their outstanding energy and power capability. In particular, the LIB's role in enabling electric vehicles (EVs) has been highlighted to replace the current oil‐driven vehicles in order to reduce the usage of oil resources and generation of CO2 gases. Unlike Li, sodium is one of the more abundant elements on Earth and exhibits similar chemical properties to Li, indicating that Na chemistry could be applied to a similar battery system. In the 1970s‐80s, both Na‐ion and Li‐ion electrodes were investigated, but the higher energy density of Li‐ion cells made them more applicable to small, portable electronic devices, and research efforts for rechargeable batteries have been mainly concentrated on LIB since then. Recently, research interest in Na‐ion batteries (NIB) has been resurrected, driven by new applications with requirements different from those in portable electronics, and to address the concern on Li abundance. In this article, both negative and positive electrode materials in NIB are briefly reviewed. While the voltage is generally lower and the volume change upon Na removal or insertion is larger for Na‐intercalation electrodes, compared to their Li equivalents, the power capability can vary depending on the crystal structures. It is concluded that cost‐effective NIB can partially replace LIB, but requires further investigation and improvement.

Từ khóa


Tài liệu tham khảo

10.1016/S0378-7753(01)00887-4

10.1016/0378-7753(94)01956-8

10.1016/0167-2738(94)90411-1

10.1038/35104644

10.1038/451652a

10.1016/S0013-4686(00)00333-9

10.1039/b820555h

10.1126/science.1212741

WEBSITE:http://www.nistep.go.jp/achiev/ftx/eng/stfc/stt039e/qr39pdf/STTqr3904.pdf accessed date: April 2012.

WEBSITE:http://www.che.ncsu.edu/ILEET/phevs/lithium‐availability/An_Abundance_of_Lithium.pdf accessed date: April 2012.

10.1049/pe:19990305

10.1016/S0378-7753(01)00585-7

10.1021/jz1005384

10.1016/0378-7753(79)80001-4

10.1149/2.035112jes

10.1038/nmat2007

10.1038/381499a0

10.1016/j.elecom.2009.12.033

10.1149/1.3555102

Li J., 2011, Int. J. Electrochem. Sci., 6, 1550, 10.1016/S1452-3981(23)15092-9

10.1016/0025-5408(94)90122-8

10.1016/j.jpowsour.2007.06.082

10.1149/1.1379565

10.1103/PhysRevB.32.2538

10.1016/j.electacta.2004.05.014

10.1007/s11669-007-9194-7

10.1016/0167-2738(88)90351-7

10.1016/0008-6223(76)90119-6

10.1149/1.2221153

10.1016/S0013-4686(99)00276-5

10.1016/S0013-4686(01)00536-9

10.1149/1.1431963

10.1016/S0013-4686(02)00250-5

10.1149/1.1870612

10.1149/1.3606364

10.1149/1.1393348

10.1016/S1388-2481(01)00244-2

10.1002/adfm.201100854

10.1149/1.1394081

10.1149/1.2168288

10.1039/c1ee01744f

10.1021/cm025556v

10.1149/1.3607983

10.1016/j.elecom.2011.06.005

10.1149/1.3611434

10.1021/cm202076g

10.1016/j.elecom.2011.09.020

10.1149/1.3254160

10.1007/BF00658014

10.1149/1.3611434

10.1038/35035045

10.1038/nmat1368

10.1021/jp066417u

10.1016/j.jpowsour.2007.06.093

10.1016/j.cap.2010.11.082

10.1007/s12598-011-0227-3

10.1016/j.jpowsour.2007.09.067

10.1016/j.carbon.2010.09.033

10.1149/1.2100746

10.1016/0167-2738(81)90076-X

10.1016/0025-5408(82)90124-6

10.1021/ic0700250

10.1149/1.3112727

10.1016/0378-4363(80)90214-4

10.1016/S0022-4596(73)80011-8

10.1016/j.materresbull.2005.11.014

10.1021/ja062027

10.1021/cr020733x

10.1016/S0013-4686(99)00199-1

10.1038/nmat2920

10.1016/j.ssi.2010.04.022

10.1103/PhysRevB.78.052101

10.1039/c1dt10798d

10.1039/b108830k

10.1149/1.1407247

10.1016/0379-6779(83)90156-X

10.1016/S0378-7753(03)00170-8

10.1149/1.3526309

10.1126/science.1122152

10.1002/aenm.201000061

10.1039/c0jm01971b

10.1149/1.1783113

10.1149/1.1480014

10.1149/1.1480135

10.1039/C0CS00127A

10.1016/0167-2738(92)90072-W

10.1149/1.1390898

10.1149/1.2059323

10.1021/cm800247u

10.1002/adma.201100904

10.1149/1.3428667

10.1149/1.1391949

10.1016/0167-2738(88)90343-8

10.1016/0167-2738(89)90285-3

10.1016/0167-2738(90)90165-N

10.1016/j.jpowsour.2010.07.062

10.1039/c0ee00713g

10.1149/1.1837571

10.1016/j.elecom.2010.01.010

10.1149/1.3138705

10.1021/cm200949v

10.1016/S0167-2738(88)80075-4

10.1016/0025-5408(76)90077-5

10.1016/0025-5408(87)90112-7

10.1149/1.1837868

10.1016/S0167-2738(96)00472-9

10.1016/S0378-7753(03)00609-8

10.1149/1.3298903

10.1149/1.1523691

10.1016/j.ssi.2006.07.028

10.1016/j.solidstatesciences.2006.05.009

10.1149/1.1884787

10.1016/S0378-7753(01)00631-0

10.1149/1.1837649

10.1016/j.saa.2005.09.025

10.1021/cm101377h

10.1039/c1ee01782a

10.1021/cm200450y

10.1038/nmat1335

10.1021/cm903138s

10.5229/JECST.2011.2.1.014

10.1016/j.jpowsour.2006.04.047

10.1021/ic100583f

10.1021/cm902023h

10.1002/anie.201003743

10.1016/j.elecom.2011.08.038

10.1063/1.3561798

10.1016/j.solidstatesciences.2011.09.004

10.1021/cm200683n

10.1021/cm200753g

10.1149/1.3236480

10.1039/c1jm13578c

10.1021/nl1023595

10.1016/0022-4596(79)90191-9

10.1016/0167-2738(95)00234-0

10.1016/S0013-4686(96)00214-9

10.1016/j.jpowsour.2008.10.110

10.1016/j.jpowsour.2009.01.051

10.1016/j.jpowsour.2011.01.060

10.1149/1.1368896

10.1016/j.elecom.2011.11.009