Triboelectric Nanogenerator: A Foundation of the Energy for the New Era

Advanced Energy Materials - Tập 9 Số 1 - 2019
Changsheng Wu1, Aurelia Chi Wang1, Wenbo Ding1, Hengyu Guo1, Zhong Lin Wang2,1
1School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA
2Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China

Tóm tắt

Abstract

As the world is marching into the era of the internet of things (IoTs) and artificial intelligence, the most vital development for hardware is a multifunctional array of sensing systems, which forms the foundation of the fourth industrial revolution toward an intelligent world. Given the need for mobility of these multitudes of sensors, the success of the IoTs calls for distributed energy sources, which can be provided by solar, thermal, wind, and mechanical triggering/vibrations. The triboelectric nanogenerator (TENG) for mechanical energy harvesting developed by Z.L. Wang's group is one of the best choices for this energy for the new era, since triboelectrification is a universal and ubiquitous effect with an abundant choice of materials. The development of self‐powered active sensors enabled by TENGs is revolutionary compared to externally powered passive sensors, similar to the advance from wired to wireless communication. In this paper, the fundamental theory, experiments, and applications of TENGs are reviewed as a foundation of the energy for the new era with four major application fields: micro/nano power sources, self‐powered sensors, large‐scale blue energy, and direct high‐voltage power sources. A roadmap is proposed for the research and commercialization of TENG in the next 10 years.

Từ khóa


Tài liệu tham khảo

10.1109/MIA.2005.1380320

10.1016/j.nanoen.2012.01.004

10.1039/C4FD00159A

10.1021/nl303573d

10.1021/nl400738p

10.1021/nl4008985

10.1021/nn403021m

10.1002/adma.201305303

10.1021/nn404614z

10.1039/C5EE01532D

10.1002/app.45674

10.1002/adma.201706790

10.1002/adma.201803968

10.1002/adma.201400021

10.1016/j.nanoen.2017.06.035

Askari H., 2018, Nano Today

10.1016/j.nanoen.2017.02.020

10.1016/j.nanoen.2017.04.006

10.1039/C7EE00158D

10.1016/j.nanoen.2018.02.020

10.1016/j.nanoen.2014.12.013

10.1002/adfm.201706680

10.1016/j.nanoen.2014.11.034

10.1063/1.4977208

10.1002/cssc.201403481

10.1002/adma.201504299

Rathore S., 2018, IOP Conf. Ser.: Mater. Sci. Eng., 012186

10.1038/s41528-017-0007-8

10.1016/j.nanoen.2014.10.034

10.1016/j.joule.2017.09.004

Wen Z., 2018, J. Mater. Chem. C

10.1016/j.mattod.2016.12.001

10.1039/c3ee42571a

10.1002/adma.201302808

10.1039/C4EE00498A

10.1016/j.nanoen.2015.01.013

10.1109/TED.2014.2377728

10.1002/adfm.201500447

10.1002/aenm.201802190

10.1039/C7EE01139C

10.1038/ncomms9376

10.1088/0022-3727/10/1/008

10.1016/j.cplett.2009.08.045

10.1063/1.103139

10.1126/science.1201512

Harper W. R., 1967, Contact and Frictional Electrification

10.1039/b902044f

10.1039/C5TA10239A

10.1002/adma.201402491

10.1021/acsami.7b13767

10.1088/1361-6528/aa52b7

10.1021/acsami.5b09907

10.1080/10584587.2016.1252662

10.1002/aenm.201600988

10.1021/acsnano.6b02076

10.1021/nl300988z

10.1021/nn4037514

10.1002/adfm.201501331

10.1038/ncomms12744

10.1002/adem.201700275

10.1038/s41467-017-00131-4

10.1002/adfm.201700049

10.1021/nn4050408

10.1002/adma.201501934

10.1016/j.nanoen.2018.01.004

10.1038/ncomms9975

10.1038/ncomms10987

10.1016/j.nanoen.2017.05.027

10.1016/j.nanoen.2016.11.025

10.1016/j.nanoen.2018.02.013

10.1016/j.nanoen.2017.11.062

10.1016/j.nanoen.2017.05.063

10.1002/adma.201400207

10.1021/acsnano.6b01569

10.1021/nn405175z

10.1039/C6TC05282G

10.1021/acsnano.5b05598

10.1021/nn4063616

10.1021/acsnano.5b00618

10.1126/sciadv.1501624

10.1126/sciadv.1700015

10.1126/sciadv.1501478

10.1002/adma.201705195

10.1002/adma.201705918

10.1021/nn501732z

10.1002/adma.201702648

10.1002/adfm.201604378

10.1039/C7RA10285B

10.1038/nenergy.2016.138

10.1021/nn504243j

10.1126/sciadv.1600097

10.1021/nn403838y

10.1021/nl5005652

10.1007/s12274-014-0559-z

10.1145/3214263

10.1002/adma.201304619

10.1002/adfm.201402703

10.1021/acsnano.6b00949

10.1002/anie.201300437

10.1039/C4EE03596H

10.1016/j.nanoen.2015.06.006

10.1016/j.nanoen.2013.08.004

10.1073/pnas.1613921113

10.1016/j.comnet.2010.05.010

10.13176/11.427

10.1016/S0167-739X(99)00059-X

Spillane R. J., 1975, Tech. Discl. Bull., 17

10.1021/nn506832w

10.1021/acsnano.6b03926

10.1016/j.mattod.2018.01.006

10.1016/j.nanoen.2018.03.044

10.1126/sciadv.1700694

Guo H., 2018, Sci. Robot., 3

10.1021/nn4043157

10.1038/ncomms5929

10.1021/acsnano.8b01532

10.1002/aenm.201702649

10.1016/j.nanoen.2014.07.024

10.1016/j.nanoen.2014.11.041

10.1021/acsnano.5b00706

10.1016/j.nanoen.2017.04.053

10.1002/aenm.201300376

10.1021/nn502618f

10.1016/j.nanoen.2016.01.009

10.1038/542159a

10.1021/nn5012732

10.1016/j.nanoen.2016.11.037

10.1021/acsnano.5b00534

10.1002/aenm.201501467

10.1021/acsnano.7b08674

10.1016/j.nanoen.2016.12.004

10.1016/j.nanoen.2016.12.061

10.1038/nnano.2017.17

10.1021/acsnano.5b06327

10.1021/acsnano.7b08014

10.1038/s41467-018-06198-x

10.1021/acsnano.7b02321

10.1002/adfm.201600624

10.1016/j.nanoen.2017.05.039

10.1002/adfm.201606408

10.1021/acsnano.7b05626

10.1002/adfm.201800610

10.1021/acsnano.5b02575

10.1016/j.ensm.2017.11.013

10.1016/j.nanoen.2018.02.022