Acta Physiologica

SCIE-ISI SCOPUS (2006-2023)

  1748-1716

  1748-1708

  Anh Quốc

Cơ quản chủ quản:  John Wiley and Sons Ltd , WILEY

Lĩnh vực:
Physiology

Các bài báo tiêu biểu

The PC12 cell as model for neurosecretion
Tập 192 Số 2 - Trang 273-285 - 2008
Remco H.S. Westerink, Andrew G. Ewing
Abstract

This review attempts to touch on the history and application of amperometry at PC12 cells for fundamental investigation into the exocytosis process. PC12 cells have been widely used as a model for neural differentiation and as such they have been used to examine the effects of differentiation on exocytotic release and specifically release at varicosities. In addition, dexamethasone‐differentiated cells have been shown to have an increased number of releasable vesicles with increased quantal size, thereby allowing for an even broader range of applications including neuropharmacological and neurotoxicological studies. PC12 cells exhibiting large numbers of events have two distinct pools of vesicles, one about twice the quantal size of the other and each about half the total releasable vesicles. As will be outlined in this review, these cells have served as an extremely useful model of exocytosis in the study of the latency of stimulation‐release coupling, the role of exocytotic proteins in regulation of release, effect of drugs on quantal size, autoreceptors, fusion pore biophysics, environmental factors, health and disease. As PC12 cells have some advantages over other models for neurosecretion, including chromaffin cells, it is more than likely that in the following decade PC12 cells will continue to serve as a model to study exocytosis.

MicroRNAs in metabolism
Tập 219 Số 2 - Trang 346-361 - 2017
Sara G. Vienberg, Julian Geiger, Søren Madsen, Louise T. Dalgaard
Abstract

MicroRNAs (miRNAs) have within the past decade emerged as key regulators of metabolic homoeostasis. Major tissues in intermediary metabolism important during development of the metabolic syndrome, such as β‐cells, liver, skeletal and heart muscle as well as adipose tissue, have all been shown to be affected by miRNAs. In the pancreatic β‐cell, a number of miRNAs are important in maintaining the balance between differentiation and proliferation (miR‐200 and miR‐29 families) and insulin exocytosis in the differentiated state is controlled by miR‐7, miR‐375 and miR‐335. MiR‐33a and MiR‐33b play crucial roles in cholesterol and lipid metabolism, whereas miR‐103 and miR‐107 regulates hepatic insulin sensitivity. In muscle tissue, a defined number of miRNAs (miR‐1, miR‐133, miR‐206) control myofibre type switch and induce myogenic differentiation programmes. Similarly, in adipose tissue, a defined number of miRNAs control white to brown adipocyte conversion or differentiation (miR‐365, miR‐133, miR‐455). The discovery of circulating miRNAs in exosomes emphasizes their importance as both endocrine signalling molecules and potentially disease markers. Their dysregulation in metabolic diseases, such as obesity, type 2 diabetes and atherosclerosis stresses their potential as therapeutic targets. This review emphasizes current ideas and controversies within miRNA research in metabolism.

Structural and functional evolution of gonadotropin‐releasing hormone in vertebrates
Tập 193 Số 1 - Trang 3-15 - 2008
Kataaki Okubo, Yoshitaka Nagahama
Abstract

The neuropeptide gonadotropin‐releasing hormone (GnRH) has a central role in the neural control of vertebrate reproduction. This review describes an overview of what is currently known about GnRH in vertebrates in the context of its structural and functional evolution. A large body of evidence has demonstrated the existence of three paralogous genes for GnRH (GnRH1, GnRH2 and GnRH3) in the vertebrate lineage. They are most probably the products of whole‐genome duplications that occurred early in vertebrate evolution. Although GnRH3 has been identified only in teleosts, comparative genomic analyses indicated that GnRH3 has not arisen from a teleost‐specific genome duplication, but has been derived from an earlier genome duplication in an ancestral vertebrate, followed by its loss in the tetrapod lineage. A loss of other paralogous genes has also occurred independently in different vertebrate lineages, leading to species‐specific differences in the organization of the GnRH system. In addition to the GnRH3 gene, the GnRH2 gene has been deleted or silenced in certain mammalian species, while some teleosts seem to have lost the GnRH1 or GnRH3 gene. The duplicated GnRH genes have undergone subfunctionalization during the evolution of vertebrates; GnRH1 has become the major stimulator of gonadotropins and probably other pituitary hormones as well, whereas GnRH2 and GnRH3 would have functioned as neuromodulators, affecting reproductive behaviour. Conversely, in cases where a paralogous gene for GnRH has been lost, one of the remaining paralogues appears to have adopted its role.

The neurovascular unit in brain function and disease
Tập 203 Số 1 - Trang 47-59 - 2011
Clotilde Lecrux, Édith Hamel
EDH: endothelium-dependent hyperpolarization and microvascular signalling
Tập 219 Số 1 - Trang 152-161 - 2017
C J Garland, K A Dora
On functional motor adaptations: from the quantification of motor strategies to the prevention of musculoskeletal disorders in the neck–shoulder region
Tập 199 Số s679 - Trang 1-46 - 2010
Pascal Madeleine
Abstract

Background:  Occupations characterized by a static low load and by repetitive actions show a high prevalence of work‐related musculoskeletal disorders (WMSD) in the neck–shoulder region. Moreover, muscle fatigue and discomfort are reported to play a relevant initiating role in WMSD. Aims: To investigate relationships between altered sensory information, i.e. localized muscle fatigue, discomfort and pain and their associations to changes in motor control patterns.

Materials & Methods:  In total 101 subjects participated. Questionnaires, subjective assessments of perceived exertion and pain intensity as well as surface electromyography (SEMG), mechanomyography (MMG), force and kinematics recordings were performed.

Results:  Multi‐channel SEMG and MMG revealed that the degree of heterogeneity of the trapezius muscle activation increased with fatigue. Further, the spatial organization of trapezius muscle activity changed in a dynamic manner during sustained contraction with acute experimental pain. A graduation of the motor changes in relation to the pain stage (acute, subchronic and chronic) and work experience were also found. The duration of the work task was shorter in presence of acute and chronic pain. Acute pain resulted in decreased activity of the painful muscle while in subchronic and chronic pain, a more static muscle activation was found. Posture and movement changed in the presence of neck–shoulder pain. Larger and smaller sizes of arm and trunk movement variability were respectively found in acute pain and subchronic/chronic pain. The size and structure of kinematics variability decreased also in the region of discomfort. Motor variability was higher in workers with high experience. Moreover, the pattern of activation of the upper trapezius muscle changed when receiving SEMG/MMG biofeedback during computer work.

Discussion:  SEMG and MMG changes underlie functional mechanisms for the maintenance of force during fatiguing contraction and acute pain that may lead to the widespread pain seen in WMSD. A lack of harmonious muscle recruitment/derecruitment may play a role in pain transition. Motor behavior changed in shoulder pain conditions underlining that motor variability may play a role in the WMSD development as corroborated by the changes in kinematics variability seen with discomfort. This prognostic hypothesis was further, supported by the increased motor variability among workers with high experience.

Conclusion:  Quantitative assessments of the functional motor adaptations can be a way to benchmark the pain status and help to indentify signs indicating WMSD development. Motor variability is an important characteristic in ergonomic situations. Future studies will investigate the potential benefit of inducing motor variability in occupational settings.

Aquaporins in plants
Tập 187 Số 1-2 - Trang 169-176 - 2006
Ralf Kaldenhoff, Matthias Fischer
Abstract

Although very often exposed to a rapid changing environment, plants are in general unable to evade from unfavourable conditions. Therefore, a fine tuned adaptation of physiology including the water balance appears to be of crucial importance. As a consequence a relatively large number of aquaporin genes are present in plant genomes. So far aquaporins in plants were shown to be involved in root water uptake, reproduction or photosynthesis. Accordingly, plant aquaporin classification as simple water pores has changed corresponding to their molecular function into channels permeable for water, small solutes and/or gases. An adjustment of the respective physiological process could be achieved by regulation mechanisms, which range from post‐translational modification, molecular trafficking to heteromerization of aquaporin isoforms. Here the function of the four plant aquaporin family subclasses with regard to substrate specificity, regulation and physiological relevance is described.

Lactobacillus reuteri increases mucus thickness and ameliorates dextran sulphate sodium‐induced colitis in mice
Tập 217 Số 4 - Trang 300-310 - 2016
David Ahl, Hui Liu, Olof Schreiber, Stefan Roos, Mia Phillipson, Mathias Holm
AbstractAim

The aim of this study was to investigate whether two Lactobacillus reuteri strains (rat‐derived R2LC and human‐derived ATCC PTA 4659 (4659)) could protect mice against colitis, as well as delineate the mechanisms behind this protection.

Methods

Mice were given L. reuteri R2LC or 4659 by gavage once daily for 14 days, and colitis was induced by addition of 3% DSS (dextran sulphate sodium) to drinking water for the last 7 days of this period. The severity of disease was assessed through clinical observations, histological evaluation and ELISA measurements of myeloperoxidase (MPO) and pro‐inflammatory cytokines from colonic samples. Mucus thickness was measured in vivo with micropipettes, and tight junction protein expression was assessed using immunohistochemistry.

Results

Colitis severity was significantly reduced by L. reuteri R2LC or 4659 when evaluated both clinically and histologically. The inflammation markers MPO, IL‐1β, IL‐6 and mKC (mouse keratinocyte chemoattractant) were increased by DSS and significantly reduced by the L. reuteri strains. The firmly adherent mucus thickness was reduced by DSS, but significantly increased by L. reuteri in both control and DSS‐treated mice. Expression of the tight junction proteins occludin and ZO‐1 was significantly increased in the bottom of the colonic crypts by L. reuteri R2LC.

Conclusion

These results demonstrate that each of the two different L. reuteri strains, one human‐derived and one‐rat‐derived, protects against colitis in mice. Mechanisms behind this protection could at least partly be explained by the increased mucus thickness as well as a tightened epithelium in the stem cell area of the crypts.

Exercise training increases skeletal muscle mitochondrial volume density by enlargement of existing mitochondria and not de novo biogenesis
Tập 222 Số 1 - 2018
Anne‐Kristine Lundby, Robert A. Jacobs, Saskia Maria De Gani, Jeroen de Leur, M. Häuser, Thomas Christian Bonne, Daniela Flück, Sune Dandanell, Niels Kirk, Andres Kaech, Urs Lüthi, Steen Larsen, Carsten Lundby
AbstractAims

(i) To determine whether exercise‐induced increases in muscle mitochondrial volume density (MitoVD) are related to enlargement of existing mitochondria or de novo biogenesis and (ii) to establish whether measures of mitochondrial‐specific enzymatic activities are valid biomarkers for exercise‐induced increases in MitoVD.

Method

Skeletal muscle samples were collected from 21 healthy males prior to and following 6 weeks of endurance training. Transmission electron microscopy was used for the estimation of mitochondrial densities and profiles. Biochemical assays, western blotting and high‐resolution respirometry were applied to detect changes in specific mitochondrial functions.

Result

MitoVD increased with 55 ± 9% (P < 0.001), whereas the number of mitochondrial profiles per area of skeletal muscle remained unchanged following training. Citrate synthase activity (CS) increased (44 ± 12%, P < 0.001); however, there were no functional changes in oxidative phosphorylation capacity (OXPHOS, CI+IIP) or cytochrome c oxidase (COX) activity. Correlations were found between MitoVD and CS (P = 0.01; r = 0.58), OXPHOS, CI+CIIP (P = 0.01; R = 0.58) and COX (P = 0.02; R = 0.52) before training; after training, a correlation was found between MitoVD and CS activity only (P = 0.04; R = 0.49). Intrinsic respiratory capacities decreased (P < 0.05) with training when respiration was normalized to MitoVD. This was not the case when normalized to CS activity although the percentage change was comparable.

Conclusions

MitoVD was increased by inducing mitochondrial enlargement rather than de novo biogenesis. CS activity may be appropriate to track training‐induced changes in MitoVD.

Passive mechanical properties and structure of the aorta: segmental analysis
Tập 190 Số 4 - Trang 277-289 - 2007
Dimitrios P. Sokolis
Abstract

Aim:  This study assessed segmental changes in the mechanical properties of the aorta at low, physiologic and high stresses, in relation with wall composition and morphometry.

Methods:  The aorta of 10 healthy pigs was divided into six thoracic and three abdominal segments. Aortic specimens were mechanically tested to failure, i.e. rupture, using a uniaxial tension device. Elastic modulus–stress curves were obtained for low (part I), physiologic (part II) and high (part III) stresses, and submitted to regression analysis; failure parameters were calculated. Histological evaluation was performed using an image‐processing system, with quantification of morphometric parameters and composition of the entire vessel and its layers, i.e. media and adventitia.

Results:  Significant differences were found in the regression parameters of parts I, II and III, and in failure parameters, suggesting that the proximal segments were stiffer at low stresses, whereas the distal were less extensible, stronger and stiffer at physiologic and high stresses. Image analysis demonstrated significant differences in morphometry and composition among the different layers and segments of the aorta, with higher elastin content proximally and collagen content distally. Good correlations were found between the regression parameters of parts I and II and elastin content, and between the failure and regression parameters of parts II and III and collagen content.

Conclusion:  Segmental changes exist in the structure and mechanical properties of the aorta, depending on the level of aortic pressure. This information is necessary for understanding aortic function at general non‐physiologic stress states.