MicroRNAs in metabolism

Acta Physiologica - Tập 219 Số 2 - Trang 346-361 - 2017
Sara G. Vienberg1, Julian Geiger2, Søren Madsen1, Louise T. Dalgaard2
1Center for Basic Metabolic Research, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
2Department of Science and Environment, Roskilde University, Roskilde, Denmark

Tóm tắt

Abstract

MicroRNAs (miRNAs) have within the past decade emerged as key regulators of metabolic homoeostasis. Major tissues in intermediary metabolism important during development of the metabolic syndrome, such as β‐cells, liver, skeletal and heart muscle as well as adipose tissue, have all been shown to be affected by miRNAs. In the pancreatic β‐cell, a number of miRNAs are important in maintaining the balance between differentiation and proliferation (miR‐200 and miR‐29 families) and insulin exocytosis in the differentiated state is controlled by miR‐7, miR‐375 and miR‐335. MiR‐33a and MiR‐33b play crucial roles in cholesterol and lipid metabolism, whereas miR‐103 and miR‐107 regulates hepatic insulin sensitivity. In muscle tissue, a defined number of miRNAs (miR‐1, miR‐133, miR‐206) control myofibre type switch and induce myogenic differentiation programmes. Similarly, in adipose tissue, a defined number of miRNAs control white to brown adipocyte conversion or differentiation (miR‐365, miR‐133, miR‐455). The discovery of circulating miRNAs in exosomes emphasizes their importance as both endocrine signalling molecules and potentially disease markers. Their dysregulation in metabolic diseases, such as obesity, type 2 diabetes and atherosclerosis stresses their potential as therapeutic targets. This review emphasizes current ideas and controversies within miRNA research in metabolism.

Từ khóa


Tài liệu tham khảo

10.1073/pnas.0811166106

10.1038/nrendo.2015.25

10.2337/db11-1508

10.1055/s-0034-1397348

10.1073/pnas.1019055108

10.1016/j.bbrc.2015.03.172

10.1007/978-3-319-22671-2_15

10.1038/nm.3862

10.1152/ajprenal.00387.2015

10.1016/j.ymeth.2012.09.015

10.1016/j.biocel.2013.06.011

10.14814/phy2.12622

10.1371/journal.pone.0055272

10.1373/clinchem.2008.112797

10.1038/nm1582

10.1038/ng1725

10.1073/pnas.0710228105

10.1038/ncomms2742

10.1016/j.addr.2014.05.009

10.1073/pnas.1408301111

10.1038/ncb2126

10.1371/journal.pgen.1004160

10.1172/JCI111938

10.1128/MCB.01009-10

10.1038/ncb2866

10.1016/j.cmet.2013.06.004

Ekimler S., 2014, Computational methods for microRNA target prediction, Methods Enzymol, 5, 671

10.1111/apha.12235

10.1093/nar/gkm1113

10.1210/en.2012-1744

10.1016/j.cmet.2006.01.005

10.1371/journal.pone.0018613

10.1161/ATVBAHA.112.300144

10.4161/rna.27239

10.1161/CIRCULATIONAHA.112.000882

10.1093/nar/gkt852

10.1038/nm.3949

10.1210/jc.2014-1425

10.1016/j.molmed.2014.06.005

10.1007/978-1-4939-0733-5_3

10.1210/jc.2010-2701

10.1038/emboj.2008.244

10.2337/diabetes.49.3.424

10.1073/pnas.1008499107

10.1016/j.semcdb.2006.12.004

10.1038/ncomms9084

10.1056/NEJMoa1209026

10.1007/s12032-014-0295-y

10.1126/science.1113329

10.1016/j.chom.2008.05.013

10.1038/ncb2211

10.1371/journal.pone.0029166

10.1186/1472-6823-11-7

10.1007/s00592-010-0226-0

10.1038/nature11793

10.1038/nature04303

10.2337/db13-0702

10.1016/j.jconrel.2015.11.020

10.1126/science.1064921

10.1172/JCI73066

10.1007/s00109-015-1296-9

10.1016/0092-8674(93)90529-Y

10.1038/nbt.2376

10.1007/s00125-013-3089-4

10.2337/db07-0175

10.1073/pnas.1005191107

10.1210/me.2015-1059

10.1016/j.drudis.2007.04.002

10.3389/fgene.2013.00083

10.1152/physiolgenomics.00042.2009

10.1038/emboj.2010.361

10.1186/gb-2009-10-6-r64

10.1038/nmeth.3014

10.1073/pnas.0804549105

10.1111/jcmm.12236

10.1371/journal.pbio.1001314

10.1016/j.cmet.2012.07.017

10.1172/JCI73468

10.3390/genes5040926

10.1007/s00125-011-2446-4

10.1126/science.1189123

10.1038/ng.786

Ofori J.K., 2014, Regulation of Glucose‐Stimulated Insulin Secretion (GSIS) by miR‐130a/b and miR‐152 via pyruvate dehydrogenase E1 component, alpha subunit PDHA1, Diabetologia, 57, S170

10.1016/j.ydbio.2007.08.032

10.1373/clinchem.2012.195776

10.1128/AAC.04220-14

10.3389/fgene.2014.00023

10.1016/j.numecd.2012.08.008

10.1038/nature03076

10.1073/pnas.0810550106

10.1128/MCB.01433-10

10.1126/science.1189862

RegulusTherapeutics I.2014.Regulus announces notice of allowance from U.S. patent office related to microRNA‐103/107 Program in Metabolic Disorders.Press release 1.

RegulusTherapeutics I.2015.RG ‐ 125 (AZD4076) a microRNA therapeutic targeting microRNA ‐ 103/107 for the treatment of NASH in patients with type 2 diabetes/Pre – Diabetes selected as clinical candidate by AstraZeneca.Press release.

10.1007/978-3-319-22380-3_2

10.1038/nature05483

10.1038/nrm3313

10.1111/dme.12579

10.1016/j.nbt.2010.02.016

10.1111/apha.12460

Salunkhe V.A., 2015, MiR‐335 regulates exocytotic proteins and affects glucose‐stimulated insulin secretion through decreased Ca2+‐dependent exocytosis in beta cells, Diabetologia, 58, S128

10.1186/gb-2004-5-3-r13

10.1021/acsnano.5b02471

10.1152/physiolgenomics.00037.2014

10.1100/tsw.2007.189

10.3390/genes5030684

10.1111/acel.12442

10.1517/14712598.8.1.59

10.1186/1758-907X-3-1

10.1038/ncb2286

10.1016/j.cmet.2010.11.006

10.1002/bies.20544

10.1016/j.cmet.2013.11.015

10.1074/jbc.M115.658625

10.1038/415227a

10.1038/nature10112

10.1038/ncb2612

Trevorlstokes2012.Group retracts microRNA paper after realizing reagent was skewing results.Retraction Watch 1.

10.1007/s00125-015-3783-5

10.1016/j.antiviral.2014.08.015

10.1093/database/bau080

10.1016/j.devcel.2009.10.013

Vandesompele J.2013.How to find stably expressed microRNAs | Biogazelle.

10.1016/j.clinbiochem.2013.03.006

10.1016/j.addr.2014.10.031

10.1038/nrendo.2015.9

10.2174/156652411794859250

10.1373/clinchem.2012.193813

10.2337/db08-1299

10.1007/s00592-014-0617-8

10.1016/j.jconrel.2013.09.015

10.15252/embr.201540837

10.1186/1479-5876-8-69

10.1007/s00125-012-2539-8