The underlying mechanism of prodromal PD: insights from the parasympathetic nervous system and the olfactory system

Translational Neurodegeneration - Tập 6 - Trang 1-9 - 2017
Shu-Ying Liu1,2,3, Piu Chan1,2, A. Jon Stoessl3
1Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital Capital Medical University, Beijing, China
2Beijing Key Laboratory on Parkinson’s Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China
3Pacific Parkinson’s Research Centre, Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia and Vancouver Coastal Health, Vancouver, Canada

Tóm tắt

Neurodegeneration of Parkinson’s disease (PD) starts in an insidious manner, 30–50% of dopaminergic neurons have been lost in the substantia nigra before clinical diagnosis. Prodromal stage of the disease, during which the disease pathology has started but is insufficient to result in clinical manifestations, offers a valuable window for disease-modifying therapies. The most focused underlying mechanisms linking the pathological pattern and clinical characteristics of prodromal PD are the prion hypothesis of alpha-synuclein and the selective vulnerability of neurons. In this review, we consider the two potential portals, the vagus nerve and the olfactory bulb, through which abnormal alpha-synuclein can access the brain. We review the clinical, pathological and neuroimaging evidence of the parasympathetic nervous system and the olfactory system in the neurodegenerative process and using the two systems as models to discuss the internal homogeneity and heterogeneity of the prodromal stage of PD, including both the clustering and subtyping of symptoms and signs. Finally, we offer some suggestions on future directions for imaging studies in prodromal Parkinson’s disease.

Tài liệu tham khảo

Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain. 1991;114(Pt 5):2283–301.

Svensson E, Horvath-Puho E, Thomsen RW, Djurhuus JC, Pedersen L, Borghammer P, Sorensen HT. Vagotomy and subsequent risk of Parkinson’s disease. Ann Neurol. 2015;78:522–9.

Ruffmann C, Parkkinen L. Gut Feelings About alpha-Synuclein in Gastrointestinal Biopsies: Biomarker in the Making? Mov Disord. 2016;31:193–202.

Eadie MJ. The pathology of certain medullary nuclei in Parkinsonism. Brain. 1963;86:781–92.

Mendes A, Goncalves A, Vila-Cha N, Moreira I, Fernandes J, Damasio J, Teixeira-Pinto A, Taipa R, Lima AB, Cavaco S. Appendectomy may delay Parkinson’s disease Onset. Mov Disord. 2015;30:1404–7.

Jennings D, Siderowf A, Stern M, Marek M. Evaluating the natural history of prodromal PD in the PARS cohort. Mov Disord. 2016;31 Suppl 2:S387.

Benarroch EE. Olfactory system: functional organization and involvement in neurodegenerative disease. Neurology. 2010;75:1104–9.

Wattendorf E, Welge-Lussen A, Fiedler K, Bilecen D, Wolfensberger M, Fuhr P, Hummel T, Westermann B. Olfactory impairment predicts brain atrophy in Parkinson’s disease. J Neurosci. 2009;29:15410–3.

Sierra M, Sanchez-Juan P, Martinez-Rodriguez MI, Gonzalez-Aramburu I, Garcia-Gorostiaga I, Quirce MR, Palacio E, Carril JM, Berciano J, Combarros O, et al. Olfaction and imaging biomarkers in premotor LRRK2 G2019S-associated Parkinson disease. Neurology. 2013;80:621–6.