Sub-2 nm particle measurement in high-temperature aerosol reactors: a review

Current Opinion in Chemical Engineering - Tập 21 - Trang 60-66 - 2018
Pratim Biswas1, Yang Wang1, Michel Attoui2
1Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
2LISA, UMR CNRS 7583, Université Paris Est Creteil & Université Paris Diderot, Institut Pierre Simon Laplace, 61 av du Géneral de Gaulle, Créteil Cedex 94010, France

Tài liệu tham khảo

Wang, 2013, Characterization of organic aerosol produced during pulverized coal combustion in a drop tube furnace, Atmos Chem Phys, 13, 10919, 10.5194/acp-13-10919-2013

Guo, 2014, Elucidating severe urban haze formation in China, PNAS, 111, 17373, 10.1073/pnas.1419604111

Hu, 2017, Engineering the outermost layers of TiO2 nanoparticles using in situ Mg doping in a flame aerosol reactor, AIChE J, 63, 870, 10.1002/aic.15451

Haddad, 2016, Growth of single crystal, oriented SnO2 nanocolumn arrays by aerosol chemical vapour deposition, CrystEngCommun, 18, 7544, 10.1039/C6CE01443G

Jiang, 2011, Transfer functions and penetrations of five differential mobility analyzers for sub-2nm particle classification, Aerosol Sci Technol, 45, 480, 10.1080/02786826.2010.546819

Wang, 2014, Application of Half Mini DMA for sub 2nm particle size distribution measurement in an electrospray and a flame aerosol reactor, J Aerosol Sci, 71, 52, 10.1016/j.jaerosci.2014.01.007

Kangasluoma, 2016, Heterogeneous nucleation onto ions and neutralized ions: insights into sign-preference, J Phys Chem C, 120, 7444, 10.1021/acs.jpcc.6b01779

Friedlander, 2000, vol 198

Stolzenburg, 2008, Equations governing single and tandem DMA configurations and a new lognormal approximation to the transfer function, Aerosol Sci Technol, 42, 421, 10.1080/02786820802157823

Steiner, 2010, A medium flow, high-resolution Vienna DMA running in recirculating mode, Aerosol Sci Technol, 44, 308, 10.1080/02786821003636763

Kuang, 2012, Modification of laminar flow ultrafine condensation particle counters for the enhanced detection of 1nm condensation nuclei, Aerosol Sci Technol, 46, 309, 10.1080/02786826.2011.626815

Iida, 2009, Effect of working fluid on sub-2nm particle detection with a laminar flow ultrafine condensation particle counter, Aerosol Sci Technol, 43, 81, 10.1080/02786820802488194

Jiang, 2011, Electrical mobility spectrometer using a diethylene glycol condensation particle counter for measurement of aerosol size distributions down to 1nm, Aerosol Sci Technol, 45, 510, 10.1080/02786826.2010.547538

Vanhanen, 2011, Particle size magnifier for nano-CN detection, Aerosol Sci Technol, 45, 533, 10.1080/02786826.2010.547889

Fialkov, 1997, Investigations on ions in flames, Prog Energy Combust Sci, 23, 399, 10.1016/S0360-1285(97)00016-6

Junninen, 2010, A high-resolution mass spectrometer to measure atmospheric ion composition, Atmos Meas Tech, 3, 1039, 10.5194/amt-3-1039-2010

Almeida, 2013, Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere, Nature, 502, 359, 10.1038/nature12663

Larriba-Andaluz, 2015, Gas molecule scattering & ion mobility measurements for organic macro-ions in He versus N2 environments, Phys Chem Chem Phys, 17, 15019, 10.1039/C5CP01017A

Hogan, 2011, Ion mobility measurements of nondenatured 12–150kDa proteins and protein multimers by tandem differential mobility analysis-mass spectrometry (DMA-MS), J Am Soc Mass Spectrom, 22, 158, 10.1007/s13361-010-0014-7

Camacho, 2013, Evolution of size distribution of nascent soot in n- and i-butanol flames, Proc Combust Inst, 34, 1853, 10.1016/j.proci.2012.05.100

Zhao, 2003, Analysis of soot nanoparticles in a laminar premixed ethylene flame by scanning mobility particle sizer, Aerosol Sci Technol, 37, 611, 10.1080/02786820300908

Sgro, 2011, Charge fraction distribution of nucleation mode particles: new insight on the particle formation mechanism, Combust Flame, 158, 1418, 10.1016/j.combustflame.2010.11.010

Carbone, 2016, Challenges of measuring nascent soot in flames as evidenced by high-resolution differential mobility analysis, Aerosol Sci Technol, 50, 740, 10.1080/02786826.2016.1179715

Fang, 2014, Measurement of sub-2nm clusters of pristine and composite metal oxides during nanomaterial synthesis in flame aerosol reactors, Anal Chem, 86, 7523, 10.1021/ac5012816

Cho, 2006, Sintering rates for pristine and doped titanium dioxide determined using a tandem differential mobility analyzer system, Aerosol Sci Technol, 40, 309, 10.1080/02786820600599424

Okuyama, 2003, Preparation of nanoparticles via spray route, Chem Eng J, 58, 537, 10.1016/S0009-2509(02)00578-X

Kangasluoma, 2013, Remarks on ion generation for CPC detection efficiency studies in sub-3-nm size range, Aerosol Sci Technol, 47, 556, 10.1080/02786826.2013.773393

Ahonen, 2017, First measurements of the number size distribution of 1–2nm aerosol particles released from manufacturing processes in a cleanroom environment, Aerosol Sci Technol, 51, 685, 10.1080/02786826.2017.1292347

Peineke, 2008, Explanation of charged nanoparticle production from hot surfaces, J Aerosol Sci, 39, 244, 10.1016/j.jaerosci.2007.12.004

Peineke, 2009, Production of equal sized atomic clusters by a hot wire, J Aerosol Sci, 40, 423, 10.1016/j.jaerosci.2008.12.008

Meuller, 2012, Review of spark discharge generators for production of nanoparticle aerosols, Aerosol Sci Technol, 46, 1256, 10.1080/02786826.2012.705448

Jiang, 2017, Comparison of nanoparticle generation by two plasma techniques: dielectric barrier discharge and spark discharge, Aerosol Sci Technol, 51, 206, 10.1080/02786826.2016.1260681

Maisser, 2015, Atomic cluster generation with an atmospheric pressure spark discharge generator, Aerosol Sci Technol, 49, 886, 10.1080/02786826.2015.1080812

Goudeli, 2016, Sampling and dilution of nanoparticles at high temperature, Aerosol Sci Technol, 50, 591, 10.1080/02786826.2016.1168922

Tang, 2017, Nascent soot particle size distributions down to 1nm from a laminar premixed burner-stabilized stagnation ethylene flame, Proc Combust Inst, 36, 993, 10.1016/j.proci.2016.08.085

Fang, 2017, Cluster formation mechanisms of titanium dioxide during combustion synthesis: observation with an APi-TOF, Aerosol Sci Technol, 51, 1071, 10.1080/02786826.2017.1331028

Fang, 2018, The initial stages of multicomponent particle formation during the gas phase combustion synthesis of mixed SiO2/TiO2, Aerosol Sci Technol, 52, 277, 10.1080/02786826.2017.1399197

Kangasluoma, 2015, Sub-3nm particle detection with commercial TSI 3772 and Airmodus A20 fine condensation particle counters, Aerosol Sci Technol, 49, 674, 10.1080/02786826.2015.1058481

Feng, 2015, General approach to the evolution of singlet nanoparticles from a rapidly quenched point source, J Phys Chem C, 120, 621, 10.1021/acs.jpcc.5b06503