Sub-2 nm particle measurement in high-temperature aerosol reactors: a review
Tài liệu tham khảo
Wang, 2013, Characterization of organic aerosol produced during pulverized coal combustion in a drop tube furnace, Atmos Chem Phys, 13, 10919, 10.5194/acp-13-10919-2013
Guo, 2014, Elucidating severe urban haze formation in China, PNAS, 111, 17373, 10.1073/pnas.1419604111
Hu, 2017, Engineering the outermost layers of TiO2 nanoparticles using in situ Mg doping in a flame aerosol reactor, AIChE J, 63, 870, 10.1002/aic.15451
Haddad, 2016, Growth of single crystal, oriented SnO2 nanocolumn arrays by aerosol chemical vapour deposition, CrystEngCommun, 18, 7544, 10.1039/C6CE01443G
Jiang, 2011, Transfer functions and penetrations of five differential mobility analyzers for sub-2nm particle classification, Aerosol Sci Technol, 45, 480, 10.1080/02786826.2010.546819
Wang, 2014, Application of Half Mini DMA for sub 2nm particle size distribution measurement in an electrospray and a flame aerosol reactor, J Aerosol Sci, 71, 52, 10.1016/j.jaerosci.2014.01.007
Kangasluoma, 2016, Heterogeneous nucleation onto ions and neutralized ions: insights into sign-preference, J Phys Chem C, 120, 7444, 10.1021/acs.jpcc.6b01779
Friedlander, 2000, vol 198
Stolzenburg, 2008, Equations governing single and tandem DMA configurations and a new lognormal approximation to the transfer function, Aerosol Sci Technol, 42, 421, 10.1080/02786820802157823
Steiner, 2010, A medium flow, high-resolution Vienna DMA running in recirculating mode, Aerosol Sci Technol, 44, 308, 10.1080/02786821003636763
Kuang, 2012, Modification of laminar flow ultrafine condensation particle counters for the enhanced detection of 1nm condensation nuclei, Aerosol Sci Technol, 46, 309, 10.1080/02786826.2011.626815
Iida, 2009, Effect of working fluid on sub-2nm particle detection with a laminar flow ultrafine condensation particle counter, Aerosol Sci Technol, 43, 81, 10.1080/02786820802488194
Jiang, 2011, Electrical mobility spectrometer using a diethylene glycol condensation particle counter for measurement of aerosol size distributions down to 1nm, Aerosol Sci Technol, 45, 510, 10.1080/02786826.2010.547538
Vanhanen, 2011, Particle size magnifier for nano-CN detection, Aerosol Sci Technol, 45, 533, 10.1080/02786826.2010.547889
Fialkov, 1997, Investigations on ions in flames, Prog Energy Combust Sci, 23, 399, 10.1016/S0360-1285(97)00016-6
Junninen, 2010, A high-resolution mass spectrometer to measure atmospheric ion composition, Atmos Meas Tech, 3, 1039, 10.5194/amt-3-1039-2010
Almeida, 2013, Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere, Nature, 502, 359, 10.1038/nature12663
Larriba-Andaluz, 2015, Gas molecule scattering & ion mobility measurements for organic macro-ions in He versus N2 environments, Phys Chem Chem Phys, 17, 15019, 10.1039/C5CP01017A
Hogan, 2011, Ion mobility measurements of nondenatured 12–150kDa proteins and protein multimers by tandem differential mobility analysis-mass spectrometry (DMA-MS), J Am Soc Mass Spectrom, 22, 158, 10.1007/s13361-010-0014-7
Camacho, 2013, Evolution of size distribution of nascent soot in n- and i-butanol flames, Proc Combust Inst, 34, 1853, 10.1016/j.proci.2012.05.100
Zhao, 2003, Analysis of soot nanoparticles in a laminar premixed ethylene flame by scanning mobility particle sizer, Aerosol Sci Technol, 37, 611, 10.1080/02786820300908
Sgro, 2011, Charge fraction distribution of nucleation mode particles: new insight on the particle formation mechanism, Combust Flame, 158, 1418, 10.1016/j.combustflame.2010.11.010
Carbone, 2016, Challenges of measuring nascent soot in flames as evidenced by high-resolution differential mobility analysis, Aerosol Sci Technol, 50, 740, 10.1080/02786826.2016.1179715
Fang, 2014, Measurement of sub-2nm clusters of pristine and composite metal oxides during nanomaterial synthesis in flame aerosol reactors, Anal Chem, 86, 7523, 10.1021/ac5012816
Cho, 2006, Sintering rates for pristine and doped titanium dioxide determined using a tandem differential mobility analyzer system, Aerosol Sci Technol, 40, 309, 10.1080/02786820600599424
Okuyama, 2003, Preparation of nanoparticles via spray route, Chem Eng J, 58, 537, 10.1016/S0009-2509(02)00578-X
Kangasluoma, 2013, Remarks on ion generation for CPC detection efficiency studies in sub-3-nm size range, Aerosol Sci Technol, 47, 556, 10.1080/02786826.2013.773393
Ahonen, 2017, First measurements of the number size distribution of 1–2nm aerosol particles released from manufacturing processes in a cleanroom environment, Aerosol Sci Technol, 51, 685, 10.1080/02786826.2017.1292347
Peineke, 2008, Explanation of charged nanoparticle production from hot surfaces, J Aerosol Sci, 39, 244, 10.1016/j.jaerosci.2007.12.004
Peineke, 2009, Production of equal sized atomic clusters by a hot wire, J Aerosol Sci, 40, 423, 10.1016/j.jaerosci.2008.12.008
Meuller, 2012, Review of spark discharge generators for production of nanoparticle aerosols, Aerosol Sci Technol, 46, 1256, 10.1080/02786826.2012.705448
Jiang, 2017, Comparison of nanoparticle generation by two plasma techniques: dielectric barrier discharge and spark discharge, Aerosol Sci Technol, 51, 206, 10.1080/02786826.2016.1260681
Maisser, 2015, Atomic cluster generation with an atmospheric pressure spark discharge generator, Aerosol Sci Technol, 49, 886, 10.1080/02786826.2015.1080812
Goudeli, 2016, Sampling and dilution of nanoparticles at high temperature, Aerosol Sci Technol, 50, 591, 10.1080/02786826.2016.1168922
Tang, 2017, Nascent soot particle size distributions down to 1nm from a laminar premixed burner-stabilized stagnation ethylene flame, Proc Combust Inst, 36, 993, 10.1016/j.proci.2016.08.085
Fang, 2017, Cluster formation mechanisms of titanium dioxide during combustion synthesis: observation with an APi-TOF, Aerosol Sci Technol, 51, 1071, 10.1080/02786826.2017.1331028
Fang, 2018, The initial stages of multicomponent particle formation during the gas phase combustion synthesis of mixed SiO2/TiO2, Aerosol Sci Technol, 52, 277, 10.1080/02786826.2017.1399197
Kangasluoma, 2015, Sub-3nm particle detection with commercial TSI 3772 and Airmodus A20 fine condensation particle counters, Aerosol Sci Technol, 49, 674, 10.1080/02786826.2015.1058481