The high charge fraction of flame-generated particles in the size range below 3 nm measured by enhanced particle detectors

Combustion and Flame - Tập 176 - Trang 72-80 - 2017
Yang Wang1, Juha Kangasluoma2, Michel Attoui2,3, Jiaxi Fang1, Heikki Junninen2, Markku Kulmala2, Tuukka Petäjä2, Pratim Biswas1
1Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
2Department of Physics, University of Helsinki, P.O. Box 64, Helsinki 00014, Finland
3LISA Université Paris Est, Diderot, Créteil 7583, France

Tài liệu tham khảo

Fialkov, 1997, Investigations on ions in flames, Prog. Energy Combust. Sci., 23, 399, 10.1016/S0360-1285(97)00016-6 Jiang, 2007, Model for nanoparticle charging by diffusion, direct photoionization, and thermionization mechanisms, J. Electrostat., 65, 209, 10.1016/j.elstat.2006.07.017 Fang, 2014, Measurement of sub-2nm clusters of pristine and composite metal oxides during nanomaterial synthesis in flame aerosol reactors, Anal. Chem., 86, 7523, 10.1021/ac5012816 Wang, 2016, Observation of incipient particle formation during flame synthesis by tandem differential mobility analysis-mass spectrometry (DMA-MS), Proc. Combust. Inst. Adachi, 2004, Ion-induced nucleation in nanoparticle synthesis by ionization chemical vapor deposition, Aerosol Sci. Technol., 38, 496, 10.1080/02786820490460734 Zhang, 2011, Role of dipole–dipole interaction on enhancing Brownian coagulation of charge-neutral nanoparticles in the free molecular regime, J. Chem. Phys., 134, 10.1063/1.3555633 Kangasluoma, 2014, Sub-3nm particle size and composition dependent response of a nano-CPC battery, Atmos. Meas. Tech., 7, 689, 10.5194/amt-7-689-2014 Kirkby, 2011, Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation, Nature, 476, 429, 10.1038/nature10343 Guo, 2003, A simple method for measuring positive ion concentrations in flames and the calibration of a nebulizer/atomizer, Combust. Flame, 133, 335, 10.1016/S0010-2180(03)00020-8 Langmuir, 1924, Langmuir probe technique, Gen. Electr. Rev., 27, 449 Sahu, 2012, In situ charge characterization of TiO2 and Cu–TiO2 nanoparticles in a flame aerosol reactor, J. Nanopart. Res., 14, 1, 10.1007/s11051-011-0678-3 Knutson, 1975, Aerosol classification by electric mobility: apparatus, theory, and applications, J. Aerosol Sci., 6, 443, 10.1016/0021-8502(75)90060-9 Ma, 2013, Soot oxidation kinetics: a comparison study of two tandem ion-mobility methods, J. Phys. Chem. C, 117, 10723, 10.1021/jp400477v Attoui, 2013, Tandem DMA generation of strictly monomobile 1–3.5nm particle standards, Aerosol Sci. Technol., 47, 499, 10.1080/02786826.2013.764966 Maricq, 2004, Size and charge of soot particles in rich premixed ethylene flames, Combust. Flame, 137, 340, 10.1016/j.combustflame.2004.01.013 Fuchs, 1963, On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere, Geofis. Pura Appl., 56, 185, 10.1007/BF01993343 Friedlander, 2000 Gopalakrishnan, 2013, Brownian dynamics determination of the bipolar steady state charge distribution on spheres and non-spheres in the transition regime, J. Aerosol Sci., 63, 126, 10.1016/j.jaerosci.2013.04.007 Kim, 2005, Method of measuring charge distribution of nanosized aerosols, J. Colloid Interface Sci., 282, 46, 10.1016/j.jcis.2004.08.066 Wang, 2014, Application of Half Mini DMA for sub 2nm particle size distribution measurement in an electrospray and a flame aerosol reactor, J. Aerosol Sci., 71, 52, 10.1016/j.jaerosci.2014.01.007 Iida, 2009, Effect of working fluid on sub-2nm particle detection with a laminar flow ultrafine condensation particle counter, Aerosol Sci. Technol., 43, 81, 10.1080/02786820802488194 Fernández de la Mora, 2013, Hand-held differential mobility analyzers of high resolution for 1-30nm particles: design and fabrication considerations, J. Aerosol Sci., 57, 45, 10.1016/j.jaerosci.2012.10.009 Fernandez de la Mora, 2015, High-resolution mobility analysis of charge-reduced electrosprayed protein ions, Anal. Chem., 87, 3729, 10.1021/ac504445n Carbone, 2016, Challenges of measuring nascent soot in flames as evidenced by high resolution differential mobility analysis, Aerosol Sci. Technol., 50, 740, 10.1080/02786826.2016.1179715 Sgro, 2011, Charge fraction distribution of nucleation mode particles: new insight on the particle formation mechanism, Combust. Flame, 158, 1418, 10.1016/j.combustflame.2010.11.010 Sgro, 2009, Measurement of nanoparticles of organic carbon in non-sooting flame conditions, Proc. Combust. Inst., 32, 689, 10.1016/j.proci.2008.06.216 Sgro, 2007, Characterization of nanoparticles of organic carbon (NOC) produced in rich premixed flames by differential mobility analysis, Proc. Combust. Inst., 31, 631, 10.1016/j.proci.2006.08.026 Sgro, 2010, Charge distribution of incipient flame-generated particles, Aerosol Sci. Technol., 44, 651, 10.1080/02786826.2010.483701 Ouyang, 2015, IMS-MS and IMS-IMS investigation of the structure and stability of dimethylamine-sulfuric acid nanoclusters, J. Phys. Chem. A, 119, 2026, 10.1021/jp512645g Wimmer, 2013, Performance of diethylene glycol based particle counters in the sub 3nm size range, Atmos. Meas. Tech., 6, 1793, 10.5194/amt-6-1793-2013 Kuang, 2012, Modification of laminar flow ultrafine condensation particle counters for the enhanced detection of 1nm condensation nuclei, Aerosol Sci. Technol., 46, 309, 10.1080/02786826.2011.626815 Sgro, 2004, A simple turbulent mixing CNC for charged particle detection down to 1.2nm, Aerosol Sci. Technol., 38, 1, 10.1080/02786820300982 Vanhanen, 2011, Particle size magnifier for nano-CN detection, Aerosol Sci. Technol., 45, 533, 10.1080/02786826.2010.547889 Lehtipalo, 2014, Methods for determining particle size distribution and growth rates between 1 and 3nm using the particle size magnifier, Boreal Environ. Res., 19, 215 Kangasluoma, 2015, Sizing of neutral sub 3nm tungsten oxide clusters using Airmodus particle size magnifier, J. Aerosol Sci., 87, 53, 10.1016/j.jaerosci.2015.05.007 Goodings, 1979, Detailed ion chemistry in methane-oxygen flames. I. Positive ions, Combust. Flame, 36, 27, 10.1016/0010-2180(79)90044-0 Goodings, 1979, Detailed ion chemistry in methane-oxygen flames. II. Negative ions, Combust. Flame, 36, 45, 10.1016/0010-2180(79)90045-2 Jones, 2016, Measurements of the concentrations of positive and negative ions along premixed fuel-rich flames of methane and oxygen, Combust. Flame, 166, 86, 10.1016/j.combustflame.2016.01.003 Mätzing, 2012, Detection of electrically charged soot particles in laminar premixed flames, Combust. Flame, 159, 1082, 10.1016/j.combustflame.2011.09.014 Fialkov, 2013, Shapes of soot particles, both charged and uncharged, after molecular beam sampling a premixed oxyacetylene flame, burning at atmospheric pressure, Combust. Sci. Technol., 185, 1762, 10.1080/00102202.2013.833612 Junninen, 2010, A high-resolution mass spectrometer to measure atmospheric ion composition, Atmos. Meas. Tech., 3, 1039, 10.5194/amt-3-1039-2010 Kulmala, 2013, Direct observations of atmospheric aerosol nucleation, Science, 339, 943, 10.1126/science.1227385 Schobesberger, 2013, Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules, Proc. Natl. Acad. Sci., 110, 17223, 10.1073/pnas.1306973110 Almeida, 2013, Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere, Nature, 502, 359, 10.1038/nature12663 Wang, 2015, Kinetics of sub-2nm TiO2 particle formation in an aerosol reactor during thermal decomposition of titanium tetraisopropoxide, J. Nanopart. Res., 17, 1, 10.1007/s11051-015-2964-y Herrmann, 2000, Turbulent transition arises at Re 35000 in a short Vienna type DMA with a large laminarizing inlet, 6 Kangasluoma, 2016, Characterization of a Herrmann type high resolution differential mobility analyzer, Aerosol Sci. Technol., 50, 222, 10.1080/02786826.2016.1142065 Ude, 2005, Molecular monodisperse mobility and mass standards from electrosprays of tetra-alkyl ammonium halides, J. Aerosol Sci., 36, 1224, 10.1016/j.jaerosci.2005.02.009 Larriba, 2011, The mobility-volume relationship below 3.0nm examined by tandem mobility-mass measurement, Aerosol Sci. Technol., 45, 453, 10.1080/02786826.2010.546820 Ku, 2009, Relation between electrical mobility, mass, and size for nanodrops 1-6.5nm in diameter in air, Aerosol Sci. Technol., 43, 241, 10.1080/02786820802590510 Kangasluoma, 2016, Heterogeneous nucleation onto ions and neutralized ions: insights into sign-preference, J. Phys. Chem. C, 120, 7444, 10.1021/acs.jpcc.6b01779 Liu, 1985, Electrostatic effects in aerosol sampling and filtration, Ann. Occup. Hyg., 29, 251 Junninen, 2014 Hughey, 2001, Kendrick mass defect spectrum: a compact visual analysis for ultrahigh-resolution broadband mass spectra, Anal. Chem., 73, 4676, 10.1021/ac010560w Zhao, 2003, Analysis of soot nanoparticles in a laminar premixed ethylene flame by scanning mobility particle sizer, Aerosol Sci. Technol., 37, 611, 10.1080/02786820300908 Burdett, 1982, Hydration of gas-phase ions and the measurement of boundary-layer cooling during flame sampling into a mass spectrometer, J. Chem. Soc., Faraday Trans, 78, 2997, 10.1039/f19827802997 Hayhurst, 2012, Mass spectrometric sampling of a flame, Combust. Explos. Shock Waves, 48, 516, 10.1134/S0010508212050036 Siefering, 1990, Growth kinetics of CVD TiO2: influence of carrier gas, J. Electrochem. Soc., 137, 1206, 10.1149/1.2086632 Calcote, 1962, 184 Goodings, 2001, Current–voltage characteristics in a flame plasma: analysis for positive and negative ions, with applications, Int. J. Mass Spectrom., 206, 137, 10.1016/S1387-3806(00)00398-5 Calcote, 1957, Mechanisms for the formation of ions in flames, Combust. Flame, 1, 385, 10.1016/0010-2180(57)90001-9 Maißer, 2015, The mass-mobility distributions of ions produced by a Po-210 source in air, J. Aerosol Sci., 90, 36, 10.1016/j.jaerosci.2015.08.004 Hayhurst, 1978, The positive and negative ions in oxy-acetylene flames, Combust. Flame, 31, 37, 10.1016/0010-2180(78)90112-8 Axford, 1996, Mass spectrometric sampling of negative ions from flames of hydrogen and oxygen: the kinetics of electron attachment and detachment in hot mixtures of H2O, O2, OH and HO2, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci., 452, 1007, 10.1098/rspa.1996.0051 Law, 2006 Turns, 1996 Steiner, 2014, High-resolution mobility and mass spectrometry of negative ions produced in a 241Am aerosol charger, Aerosol Sci. Technol., 48, 261, 10.1080/02786826.2013.870327 Manninen, 2011, Characterisation of corona-generated ions used in a neutral cluster and air ion spectrometer (NAIS), Atmos. Meas. Tech., 4, 2767, 10.5194/amt-4-2767-2011 Shmakov, 2013, Combustion chemistry of Ti (OC3H7)4 in premixed flat burner-stabilized H2/O2/Ar flame at 1atm, Proc. Combust. Inst., 34, 1143, 10.1016/j.proci.2012.05.081 Goodings, 1988, Ion chemistry of transition metals in hydrocarbon flames. II. Cations of Sc, Ti, V, Cr, and Mn, Can. J. Chem., 66, 2219, 10.1139/v88-353 Kulmala, 2001, On the formation, growth and composition of nucleation mode particles, Tellus B, 53, 479, 10.3402/tellusb.v53i4.16622