Flame aerosol synthesis of nanostructured materials and functional devices: Processing, modeling, and diagnostics
Tài liệu tham khảo
Pratsinis, 1998, Flame aerosol synthesis of ceramic powders, Prog Energy Combust Sci, 24, 197, 10.1016/S0360-1285(97)00028-2
Wooldridge, 1998, Gas-phase combustion synthesis of particles, Prog Energy Combust Sci, 24, 63, 10.1016/S0360-1285(97)00024-5
Chen, 2007, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem Rev, 107, 2891, 10.1021/cr0500535
Gupta, 2005, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 26, 3995, 10.1016/j.biomaterials.2004.10.012
Teoh, 2010, Flame spray pyrolysis: an enabling technology for nanoparticles design and fabrication, Nanoscale, 2, 1324, 10.1039/c0nr00017e
Lu, 1999, Aerosol-assisted self-assembly of mesostructured spherical nanoparticles, Nature, 398, 223, 10.1038/18410
Brinker, 1999, Evaporation-induced self-assembly: nanostructures made easy, Adv Mater, 11, 579, 10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO;2-R
Boissiere, 2011, Aerosol route to functional nanostructured inorganic and hybrid porous materials, Adv Mater, 23, 599, 10.1002/adma.201001410
Pratsinis, 2010, Aerosol-based technologies in nanoscale manufacturing: from functional materials to devices through core chemical engineering, AIChE J, 56, 3028, 10.1002/aic.12478
Zhang, 2012, Direct synthesis of nanostructured TiO2 films with controlled morphologies by stagnation swirl flames, J Aerosol Sci, 44, 71, 10.1016/j.jaerosci.2011.10.001
Mädler, 2007, Transport of nanoparticles in gases: overview and recent advances, Aerosol Air Qual Res, 7, 304, 10.4209/aaqr.2007.03.0017
Feng, 2006, Converting ceria polyhedral nanoparticles into single-crystal nanospheres, Science, 312, 1504, 10.1126/science.1125767
Ulrich, 1984, Flame synthesis of fine particles, Chem Eng News, 62, 22, 10.1021/cen-v062n032.p022
Ulrich, 1971, Theory of particle formation and growth in oxide synthesis flames, Combust Sci Technol, 4, 47, 10.1080/00102207108952471
Formenti, 1972, Preparation in a hydrogen-oxygen flame of ultrafine metal oxide particles. Oxidative properties toward hydrocarbons in the presence of ultraviolet radiation, J Colloid Interface Sci, 39, 79, 10.1016/0021-9797(72)90144-0
Brezinsky, 1996, Gas-phase combustion synthesis of materials, Proc Combust Inst, 26, 1805, 10.1016/S0082-0784(96)80001-4
Merchan-Merchan, 2010, Combustion synthesis of carbon nanotubes and related nanostructures, Prog Energy Combust Sci, 36, 696, 10.1016/j.pecs.2010.02.005
Friedlander, 2004, Emerging issues in nanoparticle aerosol science and technology, J Nanopart Res, 6, 313, 10.1023/B:NANO.0000034725.89027.6b
Xiong, 1993, Formation of agglomerate particles by coagulation and sintering-Part I. A two-dimensional solution of the population balance equation, J Aerosol Sci, 24, 283, 10.1016/0021-8502(93)90003-R
Spicer, 2002, Titania formation by TiCl4 gas-phase oxidation, surface growth and coagulation, J Aerosol Sci, 33, 17, 10.1016/S0021-8502(01)00069-6
Xing, 1996, Synthesis and restructuring of inorganic nano-particles in counterflow diffusion flames, Combust Flame, 107, 85, 10.1016/0010-2180(96)00005-3
Roth, 2007, Particle synthesis from flames, Proc Combust Inst, 31, 1774, 10.1016/j.proci.2006.08.118
Hawa, 2004, Molecular dynamics study of particle–particle collisions between hydrogen- passivated silicon nanoparticles, Phys Rev B, 69, 035417, 10.1103/PhysRevB.69.035417
Zachariah, 2010
Strobel, 2006
Strobel, 2006, Aerosol flame synthesis of catalysts, Adv Powder Technol, 17, 457, 10.1163/156855206778440525
Strobel, 2007, Flame aerosol synthesis of smart nanostructured materials, J Mater Chem, 17, 4743, 10.1039/b711652g
Schimmoeller, 2011, Flame aerosol synthesis of metal oxide catalysts with unprecedented structural and catalytic properties, ChemCatChem, 3, 1234, 10.1002/cctc.201000425
Sokolowski, 1977, The “in- flame-reaction” method for Al2O3 aerosol formation, J Aerosol Sci, 8, 219, 10.1016/0021-8502(77)90041-6
Bickmore, 1996, Ultrafine spinel powders by flame spray pyrolysis of a magnesium aluminum double alkoxide, J Am Ceram Soc, 79, 1419, 10.1111/j.1151-2916.1996.tb08608.x
Bickmore, 1998, Ultrafine titania by flame spray pyrolysis of a titanatrane complex, J Eur Ceram Soc, 18, 287, 10.1016/S0955-2219(97)00109-X
Sutorik, 1998, Synthesis of ultrafine β-alumina powders via flame spray pyrolysis of polymeric precursors, J Am Ceram Soc, 81, 1477, 10.1111/j.1151-2916.1998.tb02506.x
Baranwal, 2001, Flame spray pyrolysis of precursors as a route to nano-mullite powder: powder characterization and sintering behavior, J Am Ceram Soc, 84, 951, 10.1111/j.1151-2916.2001.tb00774.x
Marchal, 2004, Yttrium aluminum garnet nanopowders produced by liquid-feed flame spray pyrolysis (LF-FSP) of metalloorganic precursors, Chem Mater, 16, 822, 10.1021/cm021783l
Kim, 2009, One-step synthesis of core-shell (Ce0.7Zr0.3O2)x(Al2O3)1-x[(Ce0.7Zr0.3O2)@Al2O3] nanopowders via liquid-feed flame spray pyrolysis (LF-FSP), J Am Chem Soc, 131, 9220, 10.1021/ja9017545
Kim, 2004, Liquid-feed flame spray pyrolysis of nanopowders in the alumina-titania system, Chem Mater, 16, 2336, 10.1021/cm0497531
Laine, 2005, A new Y3Al5O12 phase produced by liquid-feed flame spray pyrolysis (LF-FSP), Adv Mater, 17, 830, 10.1002/adma.200401001
Hinklin, 2008, Finding spinel in all the wrong places, Adv Mater, 20, 1373, 10.1002/adma.200702124
Karthikeyan, 1997, Nanomaterial powders and deposits prepared by flame spray processing of liquid precursors, Nanostruct Mater, 8, 61, 10.1016/S0965-9773(97)00066-4
Tikkanen, 1997, Characteristics of the liquid flame spray process, Surf Coat Technol, 90, 210, 10.1016/S0257-8972(96)03153-2
Mädler, 2002, Controlled synthesis of nanostructured particles by flame spray pyrolysis, J Aerosol Sci, 33, 369, 10.1016/S0021-8502(01)00159-8
Mädler, 2002, Flame-made ceria nanoparticles, J Mater Res, 17, 1356, 10.1557/JMR.2002.0202
Mädler, 2002, Bismuth oxide nanoparticles by flame spray pyrolysis, J Am Ceram Soc, 85, 1713, 10.1111/j.1151-2916.2002.tb00340.x
Tani, 2002, Homogeneous ZnO nanoparticles by flame spray pyrolysis, J Nanopart Res, 4, 337, 10.1023/A:1021153419671
Tani, 2002, Synthesis of zinc oxide/silica composite nanoparticles by flame spray pyrolysis, J Mater Res, 37, 4627
Lengyel, 2014, Effects of lithium content and surface area on the electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2, J Electrochem Soc, 161, A1023, 10.1149/2.055406jes
Yi, 2014, Materials that can replace liquid electrolytes in Li batteries: superionic conductivities in Li1.7Al0.3Ti1.7Si0.4P2.6O12. Processing combustion synthesized nanopowders to free standing thin films, J Power Sources, 269, 577, 10.1016/j.jpowsour.2014.07.029
Choi, 2013, Preparation and electrochemical properties of glass-modified LiCoO2 cathode powders, J Power Sources, 244, 129, 10.1016/j.jpowsour.2013.03.028
Chiang, 2012, Li doped CuO film electrodes for photoelectrochemical cells, J Electrochem Soc, 159, B227, 10.1149/2.081202jes
Zhang, 2011, Electrochemical performance of spinel LiMn2O4 cathode materials made by flame-assisted spray technology, J Power Sources, 196, 3640, 10.1016/j.jpowsour.2010.07.008
Ernst, 2007, Electrochemically active flame-made nanosized spinels: LiMn2O4, Li4Ti5O12 and LiFe5O8, Mater Chem Phys, 101, 372, 10.1016/j.matchemphys.2006.06.014
Height, 2006, Nanorods of ZnO made by flame spray pyrolysis, Chem Mater, 18, 572, 10.1021/cm052163y
Grass, 2005, Flame synthesis of calcium-, strontium-, barium fluoride nanoparticles and sodium chloride, Chem Commun, 13, 1767, 10.1039/b419099h
Brunner, 2006, Glass and bioglass nanopowders by flame synthesis, Chem Commun, 13, 1384, 10.1039/b517501a
Koirala, 2014, Oxidative coupling of methane on flame-made Mn-Na2WO4/SiO2: influence of catalyst composition and reaction conditions, Appl Catal A Gen, 484, 97, 10.1016/j.apcata.2014.07.013
Suzuki, 2006, Structural and fluorescence properties of Ni:MgO-SiO2 particles synthesized by flame spray pyrolysis, Mater Sci Eng B Solid State Mater Adv Technol, 128, 151, 10.1016/j.mseb.2005.11.035
Tani, 2007, Chromium-doped forsterite nanoparticle synthesis by flame spray pyrolysis, J Am Ceram Soc, 90, 805, 10.1111/j.1551-2916.2007.01497.x
Roy, 2010, Single-step flame-made Pt/MgAl2O4 – a NOx storage-reduction catalyst with unprecedented dynamic behavior and high thermal stability, J Catal, 271, 125, 10.1016/j.jcat.2010.02.017
Roy, 2012, NOx storage and reduction over flame-made M/MgAl2O4 (M = Pt, Pd, and Rh): a comparative study, Appl Catal B, 119, 279, 10.1016/j.apcatb.2012.03.008
Haider, 2007, Gold supported on Cu-Mg-Al-mixed oxides: strong enhancement of activity in aerobic alcohol oxidation by concerted effect of copper and magnesium, J Catal, 248, 175, 10.1016/j.jcat.2007.03.007
Haider, 2009, Gold supported on Mg, Al and Cu containing mixed oxides: relation between surface properties and behavior in catalytic aerobic oxidation of 1-phenylethanol, Catal Today, 141, 349, 10.1016/j.cattod.2008.06.003
van Vegten, 2009, Structural properties, redox behaviour and methane combustion activity of differently supported flame-made Pd catalysts, Appl Catal B, 93, 38, 10.1016/j.apcatb.2009.09.010
van Vegten, 2010, Flame-made MgAl2-xMxO4 (M = Mn, Fe, Co) mixed oxides: structural properties and catalytic behavior in methane combustion, Appl Catal B, 97, 398, 10.1016/j.apcatb.2010.04.026
Rossetti, 2009, V-Al-O catalysts prepared by flame pyrolysis for the oxidative dehydrogenation of propane to propylene, Catal Today, 141, 271, 10.1016/j.cattod.2008.05.020
Taylor, 2014, The bottom up approach is not always the best processing method: dense α-Al2O3/NiAl2O4 composites, Adv Funct Mater, 24, 3392, 10.1002/adfm.201302845
Debecker, 2011, Flame-made MoO3/SiO2-Al2O3 metathesis catalysts with highly dispersed and highly active molybdate species, J Catal, 277, 154, 10.1016/j.jcat.2010.11.003
Büchel, 2014, Effect of Ba and K addition and controlled spatial deposition of Rh in Rh/Al2O3 catalysts for CO2 hydrogenation, Appl Catal A Gen, 477, 93, 10.1016/j.apcata.2014.03.010
Büchel, 2009, Influence of Pt location on BaCO3 or Al2O3 during NOx storage reduction, J Catal, 261, 201, 10.1016/j.jcat.2008.11.016
Hannemann, 2007, Combination of flame synthesis and high-throughput experimentation: the preparation of alumina-supported noble metal particles and their application in the partial oxidation of methane, Appl Catal A Gen, 316, 226, 10.1016/j.apcata.2006.09.034
Strobel, 2005, Flame-made alumina supported Pd-Pt nanoparticles: structural properties and catalytic behavior in methane combustion, Catal Lett, 104, 9, 10.1007/s10562-005-7429-y
Strobel, 2003, Flame-made platinum/alumina: structural properties and catalytic behaviour in enantioselective hydrogenation, J Catal, 213, 296, 10.1016/S0021-9517(02)00082-9
Strobel, 2005, Flame-made Pd/La2O3/Al2O3 nanoparticles: thermal stability and catalytic behavior in methane combustion, J Mater Chem, 15, 605, 10.1039/b413198c
Dongil, 2013, Structural properties of alumina- and silica-supported iridium catalysts and their behavior in the enantioselective hydrogenation of ethyl pyruvate, Appl Catal A Gen, 451, 14, 10.1016/j.apcata.2012.10.032
Huang, 2011, Tuning the support acidity of flame-made Pd/SiO2-Al2O3 catalysts for chemoselective hydrogenation, J Catal, 281, 352, 10.1016/j.jcat.2011.05.023
Williams, 2001, Laser action in strongly scattering rare-earth-metal-doped dielectric nanophosphors, Phys Rev A, 65, 013807, 10.1103/PhysRevA.65.013807
Schulz, 2003, Flame-made nanocrystalline ceria/zirconia doped with alumina or silica: structural properties and enhanced oxygen exchange capacity, J Mater Chem, 13, 2979, 10.1039/b307754c
Boningari, 2013, Low-temperature catalytic reduction of NO by NH3 over vanadia-based nanoparticles prepared by flame-assisted spray pyrolysis: influence of various supports, Appl Catal B, 140, 289, 10.1016/j.apcatb.2013.04.033
Huber, 2007, Comparison of Cu-Ce-Zr and Cu-Zn-Al mixed oxide catalysts for water-gas shift, Top Catal, 45, 101, 10.1007/s11244-007-0247-2
Lee, 2010, Enhanced luminescence properties of YAG:Ce3+ nanophosphor prepared by flame spray pyrolysis, J Electrochem Soc, 157, K25, 10.1149/1.3262609
Santis-Alvarez, 2014, Comparison of flame-made Rhodium on Al2O3 or Ce0.5Zr0.5O2 supports for the partial oxidation of methane, Appl Catal A Gen, 469, 275, 10.1016/j.apcata.2013.10.013
Høj, 2013, Two-nozzle flame spray pyrolysis (FSP) synthesis of CoMo/Al2O3 hydrotreating catalysts, Catal Lett, 143, 386, 10.1007/s10562-013-0990-x
Strobel, 2004, Flame spray synthesis of Pd/Al2O3 catalysts and their behavior in enantioselective hydrogenation, J Catal, 222, 307, 10.1016/j.jcat.2003.10.012
Huang, 2010, Increasing the Brøsted acidity of flame-derived silica/alumina up to zeolitic strength, Angew Chem Int Ed Engl, 49, 7776, 10.1002/anie.201003391
Pisduangdaw, 2009, Characteristics and catalytic properties of Pt–Sn/Al2O3 nanoparticles synthesized by one-step flame spray pyrolysis in the dehydrogenation of propane, Appl Catal A Gen, 370, 1, 10.1016/j.apcata.2009.08.006
Weidenhof, 2009, High-throughput screening of nanoparticle catalysts made by flame spray pyrolysis as hydrocarbon/NO oxidation catalysts, J Am Chem Soc, 131, 9207, 10.1021/ja809134s
Purwanto, 2008, High luminance YAG:Ce nanoparticles fabricated from urea added aqueous precursor by flame process, J Alloys Compd, 463, 350, 10.1016/j.jallcom.2007.09.023
Piumetti, 2012, Effect of vanadium dispersion and of support properties on the catalytic activity of V-containing silicas, Catal Today, 179, 140, 10.1016/j.cattod.2011.06.028
Rossetti, 2008, V2O5-SiO2 systems prepared by flame pyrolysis as catalysts for the oxidative dehydrogenation of propane, J Catal, 256, 45, 10.1016/j.jcat.2008.02.028
Jossen, 2007, Thermal stability and catalytic activity of flame-made silica-vanadia-tungsten oxide-titania, Appl Catal B, 69, 181, 10.1016/j.apcatb.2006.06.018
Li, 2006, Flame-sprayed superparamagnetic bare and silica-coated maghemite nanoparticles: synthesis, characterization, and protein adsorption-desorption, Chem Mater, 18, 6403, 10.1021/cm061861v
Ramin, 2006, Simple preparation routes towards novel Zn-based catalysts for the solventless synthesis of propylene carbonate using dense carbon dioxide, J Mol Catal A Chem, 258, 165, 10.1016/j.molcata.2006.05.041
Lee, 2011, Mn-Doped Zn2SiO4 phosphors synthesis using flame spray pyrolysis, J Therm Spray Technol, 20, 1001, 10.1007/s11666-011-9630-4
Tricoli, 2008, Optimal doping for enhanced SnO2 sensitivity and thermal stability, Adv Funct Mater, 18, 1969, 10.1002/adfm.200700784
Wang, 2014, Catalytic performance of brønsted and Lewis acid sites in phenylglyoxal conversion on flame-derived silica-zirconia, ChemCatChem, 6, 2970, 10.1002/cctc.201402397
Schulz, 2005, Transparent nanocomposites of radiopaque, flame-made Ta2O5/SiO2 particles in an acrylic matrix, Adv Funct Mater, 15, 830, 10.1002/adfm.200400234
Hannemann, 2006, Electron microscopy and EXAFS studies on oxide-supported gold-silver nanoparticles prepared by flame spray pyrolysis, Appl Surf Sci, 252, 7862, 10.1016/j.apsusc.2005.09.065
Finocchio, 2013, Redox properties of Co- and Cu-based catalysts for the steam reforming of ethanol, Int J Hydrogen Energy, 38, 3213, 10.1016/j.ijhydene.2012.12.137
Rossetti, 2012, Ni/SiO2 and Ni/ZrO2 catalysts for the steam reforming of ethanol, Appl Catal B, 117, 384, 10.1016/j.apcatb.2012.02.006
Qin, 2007, Europium-doped yttrium silicate nanophosphors prepared by flame synthesis, Mater Res Bull, 42, 1440, 10.1016/j.materresbull.2006.11.021
Beier, 2010, Selective side-chain oxidation of alkyl aromatic compounds catalyzed by cerium modified silver catalysts, J Mol Catal A Chem, 331, 40, 10.1016/j.molcata.2010.08.001
Strobel, 2008, Brilliant yellow, transparent pure, and SiO2-coated BiVO4 nanoparticles made in flames, Chem Mater, 20, 6346, 10.1021/cm800622a
Hasegawa, 2013, Y2Si2O7:Eu/SiO2 core shell phosphor particles prepared by flame spray pyrolysis, Proc Combust Inst, 34, 2155, 10.1016/j.proci.2012.07.067
Mueller, 2003, Nanoparticle synthesis at high production rates by flame spray pyrolysis, Chem Eng Sci, 58, 1969, 10.1016/S0009-2509(03)00022-8
Zhao, 2009, Magnetic janus particles prepared by a flame synthetic approach: synthesis, characterizations and properties, Adv Mater, 21, 184, 10.1002/adma.200800570
Tricoli, 2009, Anti-fogging nanofibrous SiO2 and nanostructured SiO2-TiO2 films made by rapid flame deposition and in situ annealing, Langmuir, 25, 12578, 10.1021/la901759p
Righettoni, 2010, Si:WO3 sensors for noninvasive diabetes diagnosis by breath analysis, Sensors (Basel), 1491
Wegner, 2012, High-rate production of functional nanostructured films and devices by coupling flame spray pyrolysis with supersonic expansion, Nanotechnology, 23, 185603, 10.1088/0957-4484/23/18/185603
Engel, 2012, Gas phase temperature measurements in the liquid and particle regime of a flame spray pyrolysis process using O2-based pure rotational coherent anti-Stokes Raman scattering, Appl Opt, 51, 6063, 10.1364/AO.51.006063
Loher, 2005, Fluoro-apatite and calcium phosphate nanoparticles by flame synthesis, Chem Mater, 17, 36, 10.1021/cm048776c
Loher, 2008, Micro-organism-triggered release of silver nanoparticles from biodegradable oxide carriers allows preparation of self-sterilizing polymer surfaces, Small, 4, 824, 10.1002/smll.200800047
Lu, 2009, Nanostructured Ca-based sorbents with high CO2 uptake efficiency, Chem Eng Sci, 64, 1936, 10.1016/j.ces.2008.12.038
Osterwalder, 2007, Preparation of nano-gypsum from anhydrite nanoparticles: strongly increased Vickers hardness and formation of calcium sulfate nano-needles, J Nanopart Res, 9, 275, 10.1007/s11051-006-9149-7
Huber, 2005, Flame synthesis of calcium carbonate nanoparticles, Chem Commun, 5, 648, 10.1039/b411725e
Wang, 2011, Synthesis of TiO2 nanoparticles by premixed stagnation swirl flames, Proc Combust Inst, 33, 1925, 10.1016/j.proci.2010.05.022
Teoh, 2005, Direct (one-step) synthesis of TiO2 and Pt/TiO2 nanoparticles for photocatalytic mineralisation of sucrose, Chem Eng Sci, 60, 5852, 10.1016/j.ces.2005.05.037
López, 2010, Nanostructured low crystallized titanium dioxide thin films with good photocatalytic activity, Powder Technol, 202, 111, 10.1016/j.powtec.2010.04.025
Teleki, 2009, Role of gas-aerosol mixing during in situ coating of flame-made titania particles, Ind Eng Chem Res, 48, 85, 10.1021/ie800226d
Schimmoeller, 2010, Flame-made vs wet-impregnated vanadia/titania in the total oxidation of chlorobenzene: possible role of VOx species, Catal Today, 157, 198, 10.1016/j.cattod.2010.01.029
Inturi, 2014, Visible-light-induced photodegradation of gas phase acetonitrile using aerosol-made transition metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO2, Appl Catal B, 144, 333, 10.1016/j.apcatb.2013.07.032
Teoh, 2007, Flame sprayed visible light-active Fe-TiO2 for photomineralisation of oxalic acid, Catal Today, 120, 203, 10.1016/j.cattod.2006.07.049
George, 2011, Role of Fe doping in tuning the band gap of TiO2 for the photo-oxidation-induced cytotoxicity paradigm, J Am Chem Soc, 133, 11270, 10.1021/ja202836s
Siriwong, 2011, Flame-made single phase Zn2TiO4 nanoparticles, Mater Lett, 65, 2007, 10.1016/j.matlet.2011.03.058
Jung, 2008, Morphologies and crystal structures of nano-sized Ba1-xSrxTiO3 primary particles prepared by flame spray pyrolysis, Mater Res Bull, 43, 1789, 10.1016/j.materresbull.2007.07.011
Kazakevičius, 2014, Electronic conductivity enhancement of (La,Sr)TiO3 with Nb-doping on B-Site, Fuel Cells, 14, 954, 10.1002/fuce.201400015
Teleki, 2008, Flame-made Nb- and Cu-doped TiO2 sensors for CO and ethanol, Sens Actuators B Chem, 130, 449, 10.1016/j.snb.2007.09.008
Phanichphant, 2011, Flame-made Nb-doped TiO2 ethanol and acetone sensors, Sensors (Basel), 11, 472, 10.3390/s110100472
Park, 2014, Electrochemical properties of ultrafine TiO2-doped MoO3 nanoplates prepared by one-pot flame spray pyrolysis, RSC Adv, 33, 17382, 10.1039/c4ra01780c
Niu, 2014, Catalytic behavior of flame-made Pd/TiO2 nanoparticles in methane oxidation at low temperatures, J Phys Chem C, 118, 19165, 10.1021/jp504859d
Chiarello, 2010, Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO2, J Catal, 273, 182, 10.1016/j.jcat.2010.05.012
Chiarello, 2011, Effect of the CH3OH/H2O ratio on the mechanism of the gas-phase photocatalytic reforming of methanol on noble metal-modified TiO2, J Catal, 280, 168, 10.1016/j.jcat.2011.03.013
Tricoli, 2009, Minimal cross-sensitivity to humidity during ethanol detection by SnO2-TiO2 solid solutions, Nanotechnology, 20, 315502, 10.1088/0957-4484/20/31/315502
Purwanto, 2007, Formation of BaTiO3 nanoparticles from an aqueous precursor by flame-assisted spray pyrolysis, J Eur Ceram Soc, 27, 4489, 10.1016/j.jeurceramsoc.2007.04.009
Chaisuk, 2011, Preparation and characterization of CeO2/TiO2 nanoparticles by flame spray pyrolysis, Ceram Int, 37, 1459, 10.1016/j.ceramint.2010.11.018
Akurati, 2008, Flame-made WO3/TiO2 nanoparticles: relation between surface acidity, structure and photocatalytic activity, Appl Catal B, 79, 53, 10.1016/j.apcatb.2007.09.036
Teoh, 2007, Inter-relationship between Pt oxidation states on TiO2 and the photocatalytic mineralisation of organic matters, J Catal, 251, 271, 10.1016/j.jcat.2007.08.008
Bubenhofer, 2012, Large-scale synthesis of PbS-TiO2 heterojunction nanoparticles in a single step for solar cell application, J Phys Chem C, 116, 16264, 10.1021/jp3036814
Zong, 2015, Direct synthesis of supported palladium catalysts for methane combustion by stagnation swirl flame, Proc Combust Inst, 35, 2249, 10.1016/j.proci.2014.06.114
Thybo, 2004, Flame spray deposition of porous catalysts on surfaces and in microsystems, J Catal, 223, 271, 10.1016/j.jcat.2004.01.027
Pisduangdaw, 2015, One step synthesis of Pt–Co/TiO2 catalysts by flame spray pyrolysis for the hydrogenation of 3-nitrostyrene, Catal Commun, 61, 11, 10.1016/j.catcom.2014.11.008
Chiarello, 2008, Photocatalytic hydrogen production over flame spray pyrolysis-synthesised TiO2 and Au/TiO2, Appl Catal B, 84, 332, 10.1016/j.apcatb.2008.04.012
Tiwari, 2008, One-step synthesis of noble metal–titanium dioxide nanocomposites in a flame aerosol reactor, Appl Catal A Gen, 345, 241, 10.1016/j.apcata.2008.05.003
Jiang, 2012, Exploring the relationship between surface structure and photocatalytic activity of flame-made TiO2-based catalysts, Appl Catal B, 126, 290, 10.1016/j.apcatb.2012.07.027
Schopf, 2013, Transfer of highly porous nanoparticle layers to various substrates through mechanical compression, Nanoscale, 5, 3764, 10.1039/c3nr34235b
Schulz, 2005, Independent control of metal cluster and ceramic particle characteristics during one-step synthesis of Pt/TiO2, J Mater Res, 20, 2568, 10.1557/jmr.2005.0319
Sel, 2014, Synthesis and characterization of nano-V2O5 by flame spray pyrolysis, and its cathodic performance in Li-ion rechargeable batteries, Appl Surf Sci, 318, 150, 10.1016/j.apsusc.2014.02.061
Ng, 2009, Flame spray-pyrolyzed vanadium oxide nanoparticles for lithium battery cathodes, Phys Chem Chem Phys, 11, 3748, 10.1039/b821389p
Castillo, 2010, Flame-assisted synthesis of nanoscale, amorphous and crystalline, spherical BiVO4 with visible-light photocatalytic activity, Appl Catal B, 95, 335, 10.1016/j.apcatb.2010.01.012
Kho, 2011, Flame preparation of visible-light-responsive BiVO4 oxygen evolution photocatalysts with subsequent activation via aqueous route, ACS Appl Mater Interfaces, 3, 1997, 10.1021/am200247y
Boningari, 2012, Low-temperature selective catalytic reduction of NO with NH3 over V/ZrO2 prepared by flame-assisted spray pyrolysis: structural and catalytic properties, Appl Catal B, 127, 255, 10.1016/j.apcatb.2012.08.012
Høj, 2014, Structure, activity and kinetics of supported molybdenum oxide and mixed molybdenum-vanadium oxide catalysts prepared by flame spray pyrolysis for propane OHD, Appl Catal A Gen, 472, 29, 10.1016/j.apcata.2013.11.027
Rao, 2014, Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation, Nano Lett, 14, 1099, 10.1021/nl500022z
Tian, 2009, Flame sprayed V-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light irradiation, Chem Eng J, 151, 220, 10.1016/j.cej.2009.02.030
Arji, 2009, Some studies on slurry erosion of flame sprayed Ni-Cr-Si-B coating, Ind Lubr Tribol, 61, 4, 10.1108/00368790910929476
Wagloehner, 2015, Oxidation of soot on manganese oxide catalysts, Chem Eng J, 259, 492, 10.1016/j.cej.2014.08.021
Choi, 2013, Characteristics of ZnMn2O4 nanopowders prepared by flame spray pyrolysis for use as anode material in lithium ion batteries, Int J Electrochem Sci, 8, 6281, 10.1016/S1452-3981(23)14761-4
Tamaekong, 2014, The effect of Mn on flame spray pyrolysis-made ZnO nanoparticles for flammable gases detection, J Nanosci Nanotechnol, 14, 7860, 10.1166/jnn.2014.9424
Kriegel, 1994, Flame pyrolysis: a preparation route for ultrafine powders of metastable β-SrMnO3 and NiMn2O4, J Mater Sci Lett, 13, 1111, 10.1007/BF00633530
Lu, 2013, Influence of the synthesis method on the structure of Pd-substituted perovskite catalysts for methane oxidation, Catal Today, 208, 42, 10.1016/j.cattod.2012.10.026
Buchneva, 2010, Effective Ag doping and resistance to sulfur poisoning of La-Mn perovskites for the catalytic flameless combustion of methane, J Mater Chem, 20, 10021, 10.1039/c0jm01344g
Lu, 2014, Methane abatement under stoichiometric conditions on perovskite-supported palladium catalysts prepared by flame spray synthesis, Appl Catal B, 144, 631, 10.1016/j.apcatb.2013.08.001
Liu, 2015, Effects of cerium incorporation on the catalytic oxidation of benzene over flame-made perovskite La1−xCexMnO3 catalysts, Particuology, 19, 60, 10.1016/j.partic.2014.07.001
Tamaekong, 2014, NO2 sensing properties of flame-made MnOx-loaded ZnO-nanoparticle thick film, Sens Actuators B, 204, 239, 10.1016/j.snb.2014.07.089
Grimm, 1997, Flame pyrolysis- a preparation route for ultrafine pure γ-Fe2O3 powders and the control of their particle size and properties, J Mater Sci, 32, 1083, 10.1023/A:1018598927041
Duret, 2005, Visible light-induced water oxidation on mesoscopic α-Fe2O3 films made by ultrasonic spray pyrolysis, J Phys Chem B, 109, 17184, 10.1021/jp044127c
Strobel, 2009, Direct synthesis of maghemite, magnetite and wustite nanoparticles by flame spray pyrolysis, Adv Powder Technol, 20, 190, 10.1016/j.apt.2008.08.002
Rao, 2011, Unique magnetic properties of single crystal γ-Fe2O3 nanowires synthesized by flame vapor deposition, Nano Lett, 11, 2390, 10.1021/nl2007533
Li, 2012, Stable core shell Co3Fe7-CoFe2O4 nanoparticles synthesized via flame spray pyrolysis approach, Ind Eng Chem Res, 51, 11157, 10.1021/ie3010644
Dosev, 2007, Magnetic/luminescent core/shell particles synthesized by spray pyrolysis and their application in immunoassays with internal standard, Nanotechnology, 18, 055102, 10.1088/0957-4484/18/5/055102
Kim, 2011, Zn-doped γ-Fe2O3 sensors for flammable gas detection: effect of annealing on sensitivity and stability, J Ind Eng Chem, 17, 158, 10.1016/j.jiec.2010.12.016
Barkley, 2012, Combustion synthesis of Fe-incorporated SnO2 nanoparticles using organometallic precursor combination, Adv Mater Sci Eng, 685754, 1, 10.1155/2012/685754
Channei, 2012, Photocatalytic activity under visible light of Fe-doped CeO2 nanoparticles synthesized by flame spray pyrolysis, Ceram Int, 39, 3129, 10.1016/j.ceramint.2012.09.093
Gan, 2011, Design and manufacture of Nd-Fe-B thick coatings by the thermal spray process, Surf Coat Technol, 205, 4697, 10.1016/j.surfcoat.2011.04.034
Hogan, 2008, Narrow size distribution nanoparticle production by electrospray processing of ferritin, J Aerosol Sci, 39, 432, 10.1016/j.jaerosci.2008.01.002
Kim, 2010, Effect of synthesis condition and annealing on the sensitivity and stability of gas sensors made of Zn-doped γ-Fe2O3 particles, Korean J Chem Eng, 27, 1003, 10.1007/s11814-010-0154-2
Rudin, 2012, Homogeneous iron phosphate nanoparticles by combustion of sprays, Ind Eng Chem Res, 51, 7891, 10.1021/ie202736s
Cai, 2014, Sol-flame synthesis of cobalt-doped TiO2 nanowires with enhanced electrocatalytic activity for oxygen evolution reaction, Phys Chem Chem Phys, 16, 12299, 10.1039/C4CP01748J
Chiarello, 2005, Flame-spray pyrolysis preparation of perovskites for methane catalytic combustion, J Catal, 236, 251, 10.1016/j.jcat.2005.10.003
Chiarello, 2007, Solvent nature effect in preparation of perovskites by flame-pyrolysis: 1. Carboxylic acids, Appl Catal B, 72, 218, 10.1016/j.apcatb.2006.11.001
Chiarello, 2007, Solvent nature effect in preparation of perovskites by flame pyrolysis: 2. Alcohols and alcohols plus propionic acid mixtures, Appl Catal B, 72, 227, 10.1016/j.apcatb.2006.10.026
Chiarello, 2007, Flame-synthesized LaCoO3-supported Pd 1. Structure, thermal stability and reducibility, J Catal, 252, 127, 10.1016/j.jcat.2007.10.004
Chiarello, 2007, Flame-synthesized LaCoO3-supported Pd 2. Catalytic behavior in the reduction of NO by H2 under lean conditions, J Catal, 252, 137, 10.1016/j.jcat.2007.10.003
Buchneva, 2009, La-Ag-Co perovskites for the catalytic flameless combustion of methane, Appl Catal A Gen, 370, 24, 10.1016/j.apcata.2009.09.025
Teoh, 2008, Ru-doped cobalt-zirconia nanocomposites by flame synthesis: physicochemical and catalytic properties, Chem Mater, 20, 4069, 10.1021/cm8002657
Azurdia, 2008, Systematic synthesis of mixed-metal oxides in NiO-Co3O4, NiO-MoO3, and NiO-CuO systems via liquid-feed flame spray pyrolysis, J Mater Chem, 18, 3249, 10.1039/b801745j
Feng, 2013, Sol-flame synthesis: a general strategy to decorate nanowires with metal oxide/noble metal nanoparticles, Nano Lett, 13, 855, 10.1021/nl300060b
Leanza, 2000, Perovskite catalysts for the catalytic flameless combustion of methane: preparation by flame-hydrolysis and characterization by TPD–TPR-MS and EPR, Appl Catal B, 28, 55, 10.1016/S0926-3373(00)00163-6
Chaisuk, 2011, Effects of Co dopants and flame conditions on the formation of Co/ZrO2 nanoparticles by flame spray pyrolysis and their catalytic properties in CO hydrogenation, Catal Commun, 12, 917, 10.1016/j.catcom.2011.01.016
Martinez, 2012, Aerosol-derived Ni1-xZnx electrocatalysts for direct hydrazine fuel cells, Phys Chem Chem Phys, 14, 5512, 10.1039/c2cp40546f
Athanassiou, 2007, Preparation of homogeneous, bulk nanocrystalline Ni/Mo alloys with tripled vickers hardness using flame-made metal nanoparticles, Chem Mater, 19, 4847, 10.1021/cm071104c
Chiang, 2011, Copper oxide nanoparticle made by flame spray pyrolysis for photoelectrochemical water splitting – part II. Photoelectrochemical study, Int J Hydrogen Energy, 36, 15519, 10.1016/j.ijhydene.2011.09.041
Rao, 2009, Rapid catalyst-free flame synthesis of dense, aligned α-Fe2O3 nanoflake and CuO nanoneedle arrays, Nano Lett, 9, 3001, 10.1021/nl901426t
Cai, 2013, Flame synthesis of 1-D complex metal oxide nanomaterials, Proc Combust Inst, 34, 2229, 10.1016/j.proci.2012.05.004
Dressick, 2014, Preparation and layer-by-layer solution deposition of Cu(In,Ga)O2 nanoparticles with conversion to Cu(In,Ga)S2 films, PLoS ONE, 9, 10.1371/journal.pone.0100203
Zhang, 2010, Catalytic reduction of NO by CO over Cu/CexZr1-xO2 prepared by flame synthesis, J Catal, 272, 210, 10.1016/j.jcat.2010.04.001
Kydd, 2009, Flame-synthesized ceria-supported copper dimers for preferential oxidation of CO, Adv Funct Mater, 19, 369, 10.1002/adfm.200801211
Kydd, 2011, Temperature-induced evolution of reaction sites and mechanisms during preferential oxidation of CO, J Catal, 277, 64, 10.1016/j.jcat.2010.10.009
Choi, 2013, One-pot facile synthesis of Janus-structured SnO2-CuO composite nanorods and their application as anode materials in Li-ion batteries, Nanoscale, 5, 4662, 10.1039/c3nr00215b
Widiyandari, 2012, CuO/WO3 and Pt/WO3 nanocatalysts for efficient pollutant degradation using visible light irradiation, Chem Eng J, 180, 323, 10.1016/j.cej.2011.10.095
Lee, 2014, Flame-spray-processed CuO-WO3 nanopowders as photocatalysts, J Am Ceram Soc, 97, 3719, 10.1111/jace.13327
Height, 2006, Ag-ZnO catalysts for UV-photodegradation of methylene blue, Appl Catal B, 63, 305, 10.1016/j.apcatb.2005.10.018
Pawinrat, 2009, Synthesis of Au-ZnO and Pt-ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes, Catal Commun, 10, 1380, 10.1016/j.catcom.2009.03.002
Liewhiran, 2008, Doctor-bladed thick films of flame-made Pd/ZnO nanoparticles for ethanol sensing, Curr Appl Phys, 8, 336, 10.1016/j.cap.2007.10.075
Kruefu, 2011, Selectivity of flame-spray-made Nb/ZnO thick films towards NO2 gas, Sens Actuators B Chem, 156, 360, 10.1016/j.snb.2011.04.046
Kilian, 2014, Pulsed direct flame deposition and thermal annealing of transparent amorphous Indium Zinc oxide films as active layers in field effect transistors, ACS Appl Mater Interfaces, 6, 12245, 10.1021/am501837u
Brehm, 2006, Synthesis and local structure of doped nanocrystalline Zinc oxides, J Appl Phys, 100, 064311, 10.1063/1.2349430
Samerjai, 2012, Flame-spray-made metal-loaded semiconducting metal oxides thick films for flammable gas sensing, Sens Actuators B Chem, 171, 43, 10.1016/j.snb.2012.05.052
Xu, 2007, Flame synthesis of zinc oxide nanowires, Chem Phys Lett, 449, 175, 10.1016/j.cplett.2007.10.045
Widiyastuti, 2007, A pulse combustion-spray pyrolysis process for the preparation of nano- and submicrometer- sized oxide particles, J Am Ceram Soc, 90, 3779
Halfer, 2013, Ceramic mask-assisted flame spray pyrolysis for direct and accurate patterning of metal oxide nanoparticles, Adv Eng Mater, 15, 773, 10.1002/adem.201300032
Liewhiran, 2007, Influence of thickness on ethanol sensing characteristics of doctor-bladed thick film from flame-made ZnO nanoparticles, Sensors (Basel), 7, 185, 10.3390/s7020185
Liewhiran, 2007, Effects of palladium loading on the response of a thick film flame-made ZnO gas sensor for detection of ethanol vapor, Sensors (Basel), 7, 1159, 10.3390/s7071159
Ifeacho, 2008, Ga2O3 nanoparticles synthesized in a low-pressure flame reactor, J Electrochem Soc, 10, 121
Simanzhenkov, 2004, Synthesis of germanium oxide nanoparticles in low-pressure premixed flames, J Nanosci Nanotechnol, 4, 157, 10.1166/jnn.2004.044
Kim, 2002, Synthesis of SrTiO3:Pr,Al by ultrasonic spray pyrolysis, Ceram Int, 28, 29, 10.1016/S0272-8842(01)00054-2
Kang, 2002, Direct synthesis of strontium titanate phosphor particles with high luminescence by flame spray pyrolysis, Mater Res Bull, 37, 263, 10.1016/S0025-5408(01)00778-4
Kang, 2003, Improved photoluminescence of Sr5(PO4)3Cl:Eu2+ phosphor particles prepared by flame spray pyrolysis, J Electrochem Soc, 150, H38, 10.1149/1.1534099
Guo, 2006, The formation of cubic and monoclinic Y2O3 nanoparticles in a gas-phase flame process, Philos Mag Lett, 86, 457, 10.1080/09500830600871194
Dosev, 2006, Photoluminescence of Eu3+:Y2O3 as an indication of crystal structure and particle size in nanoparticles synthesized by flame spray pyrolysis, J Aerosol Sci, 37, 402, 10.1016/j.jaerosci.2005.08.009
Camenzind, 2005, Cubic or monoclinic Y2O3:Eu3+ nanoparticles by one step flame spray pyrolysis, Chem Phys Lett, 415, 193, 10.1016/j.cplett.2005.09.002
Lee, 2009, Luminescent properties of Y2O3:Eu3+ nanophosphor prepared from urea added precursor using flame spray pyrolysis, J Mater Res, 24, 2584, 10.1557/jmr.2009.0319
Qin, 2005, Flame synthesis of Y2O3:Eu nanophosphors using ethanol as precursor solvents, J Mater Res, 20, 2960, 10.1557/JMR.2005.0364
Purwanto, 2006, Preparation of submicron- and nanometer-sized particles of Y2O3:Eu3+ by flame spray pyrolysis using ultrasonic and two-fluid atomizers, J Chem Eng Jpn, 39, 68, 10.1252/jcej.39.68
Kubrin, 2010, Flame aerosol deposition of Y2O3:Eu nanophosphor screens and their photoluminescent performance, Nanotechnology, 21, 225603, 10.1088/0957-4484/21/22/225603
Tanner, 2004, Synthesis and spectroscopy of lanthanide ion-doped Y2O3, J Phys Chem B, 108, 136, 10.1021/jp035583o
Sotiriou, 2011, Color-tunable nanophosphors by codoping flame-made Y2O3 with Tb and Eu, J Phys Chem C, 115, 1084, 10.1021/jp106137u
Sotiriou, 2012, Green, silica-coated monoclinic Y2O3:Tb3+ nanophosphors: flame synthesis and characterization, J Phys Chem C, 116, 4493, 10.1021/jp211722z
Kong, 2010, Flame synthesis and effects of host materials on Yb3+/Er3+ co-doped upconversion nanophosphors, Mater Lett, 64, 688, 10.1016/j.matlet.2009.12.039
Yuan, 1998, Preparation of zirconia and yttria-stabilized zirconia (YSZ) fine powders by flame-assisted ultrasonic spray pyrolysis (FAUSP), Solid State Ion, 109, 119, 10.1016/S0167-2738(98)00108-8
Geier, 2013, Electrospray flame synthesis of yttria-stabilized zirconia nanoparticles, Ind Eng Chem Res, 52, 16842, 10.1021/ie4021478
Jossen, 2005, Morphology and composition of spray-flame-made yttria-stabilized zirconia nanoparticles, Nanotechnology, 16, S609, 10.1088/0957-4484/16/7/039
Heel, 2009, Flame spray synthesis and characterisation of stabilised ZrO2 and CeO2 electrolyte nanopowders for SOFC applications at intermediate temperatures, J Electroceram, 22, 40, 10.1007/s10832-007-9384-z
Eggersdorfer, 2012, Mass-mobility characterization of flame-made ZrO2 aerosols: primary particle diameter and extent of aggregation, J Colloid Interface Sci, 387, 12, 10.1016/j.jcis.2012.07.078
Mueller, 2004, Growth of zirconia particles made by flame spray pyrolysis, AIChE J, 50, 3085, 10.1002/aic.10272
Torabmostaedi, 2013, Process control for the synthesis of ZrO2 nanoparticles using FSP at high production rate, Powder Technol, 246, 419, 10.1016/j.powtec.2013.05.006
Jossen, 2006, Thermal stability of flame-made zirconia-based mixed oxides, Chem Vap Deposition, 12, 614, 10.1002/cvde.200506380
Stark, 2003, Flame-made nanocrystalline ceria/zirconia: structural properties and dynamic oxygen exchange capacity, J Catal, 220, 35, 10.1016/S0021-9517(03)00235-5
Strobel, 2006, Flame-derived Pt/Ba/CexZr1-xO2: influence of support on thermal deterioration and behavior as NOx storage-reduction catalysts, J Catal, 243, 229, 10.1016/j.jcat.2006.07.016
Hotz, 2007, Syngas production from butane using a flame-made Rh/Ce0.5Zr0.5O2 catalyst, Appl Catal B, 37, 336, 10.1016/j.apcatb.2007.01.001
Gröhn, 2012, Fluid-particle dynamics during combustion spray aerosol synthesis of ZrO2, Chem Eng J, 191, 491, 10.1016/j.cej.2012.02.093
Gröhn, 2014, Scale-up of nanoparticle synthesis by flame spray pyrolysis: the high-temperature particle residence time, Ind Eng Chem Res, 53, 10734, 10.1021/ie501709s
Gröhn, 2014, On-line monitoring of primary and agglomerate particle dynamics, J Aerosol Sci, 73, 1, 10.1016/j.jaerosci.2014.03.001
Merchan-Merchan, 2006, Flame synthesis of molybdenum oxide whiskers, Chem Phys Lett, 422, 72, 10.1016/j.cplett.2006.02.040
Merchan-Merchan, 2009, Volumetric flame synthesis of well-defined molybdenum oxide nanocrystals, Nanotechnology, 20, 475601, 10.1088/0957-4484/20/47/475601
Cai, 2011, Morphology-controlled flame synthesis of single, branched, and flower-like alpha-MoO3 nanobelt arrays, Nano Lett, 11, 872, 10.1021/nl104270u
Schuh, 2014, One-step synthesis of bismuth molybdate catalysts via flame spray pyrolysis for the selective oxidation of propylene to acrolein, Chem Commun, 50, 15404, 10.1039/C4CC07527G
Liewhiran, 2009, H2 sensing response of flame-spray-made Ru/SnO2 thick films fabricated from spin-coated nanoparticles, Sensors (Basel), 9, 8996, 10.3390/s91108996
Sahm, 2007, Sensing of CH4, CO and ethanol with in situ nanoparticle aerosol-fabricated multilayer sensors, Sens Actuators B Chem, 127, 63, 10.1016/j.snb.2007.07.001
Sahm, 2007, Formation of multilayer films for gas sensing by in situ thermophoretic deposition of nanoparticles from aerosol phase, J Mater Res, 22, 850, 10.1557/jmr.2007.0106
Großmann, 2011, Enhancing performance of FSP SnO2-based gas sensors through Sb-doping and Pd-functionalization, Sens Actuators B Chem, 158, 388, 10.1016/j.snb.2011.06.044
Kemmler, 2012, Quenched, nanocrystalline In4Sn3O12 high temperature phase for gas sensing applications, Sens Actuators B Chem, 161, 740, 10.1016/j.snb.2011.11.026
Katusic, 2006, Production and characterization of ITO-Pt semiconductor powder containing nanoscale noble metal particles catalytically active in dye-sensitized solar cells, Sol Energy Mater Sol Cells, 90, 1983, 10.1016/j.solmat.2006.01.002
Ifeacho, 2007, Synthesis of SnO2-x nanoparticles tuned between 0 <= x <= 1 in a premixed low pressure H2/O2/Ar flame, Proc Combust Inst, 31, 1805, 10.1016/j.proci.2006.07.083
Kemmler, 2013, Flame spray pyrolysis for sensing at the nanoscale, Nanotechnology, 24, 442001, 10.1088/0957-4484/24/44/442001
Keskinen, 2009, Size-selected agglomerates of SnO2 nanoparticles as gas sensors, J Appl Phys, 106, 084316, 10.1063/1.3212995
Sahm, 2004, Flame spray synthesis of tin dioxide nanoparticles for gas sensing, Sens Actuators B Chem, 98, 148, 10.1016/j.snb.2003.10.003
Mädler, 2006, Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO2 nanoparticles, Sens Actuators B Chem, 114, 283, 10.1016/j.snb.2005.05.014
Mädler, 2006, Sensing low concentrations of CO using flame-spray-made Pt/SnO2 nanoparticles, J Nanopart Res, 8, 783, 10.1007/s11051-005-9029-6
Kühne, 2008, Wafer-level flame-spray-pyrolysis deposition of gas-sensitive layers on microsensors, J Micromech Microeng, 18, 035040, 10.1088/0960-1317/18/3/035040
Symalla, 2009, Structure and NOx storage behaviour of flame-made BaCO3 and Pt/BaCO3 nanoparticles, Appl Catal B, 89, 41, 10.1016/j.apcatb.2008.11.020
Büchel, 2009, Effect of the proximity of Pt to Ce or Ba in Pt/Ba/CeO2 catalysts on NOx storage-reduction performance, Top Catal, 52, 1709, 10.1007/s11244-009-9330-1
Grass, 2007, Large-scale preparation of ceria/bismuth metal-matrix nano-composites with a hardness comparable to steel, J Mater Chem, 17, 1485, 10.1039/b614317b
Seo, 2006, Synthesis and properties of Ce1-xGdxO2-x/2 solid solution prepared by flame spray pyrolysis, Mater Res Bull, 41, 359, 10.1016/j.materresbull.2005.08.012
Im, 2007, Synthesis of nano-sized gadolinia doped ceria powder by aerosol flame deposition, J Eur Ceram Soc, 27, 3671, 10.1016/j.jeurceramsoc.2007.02.042
Iwako, 2010, Photoluminescence of cubic and monoclinic Gd2O3:Eu phosphors prepared by flame spray pyrolysis, J Lumin, 130, 1470, 10.1016/j.jlumin.2010.03.014
Wang, 2008, Ferroelectric WO3 nanoparticles for acetone selective detection, Chem Mater, 20, 4794, 10.1021/cm800761e
Xu, 2006, Flame synthesis of aligned tungsten oxide nanowires, Appl Phys Lett, 88, 243115, 10.1063/1.2213181
Pokhrel, 2010, Growth of ultrafine single crystalline WO3 nanoparticles using flame spray pyrolysis, Cryst Growth Des, 10, 632, 10.1021/cg9010423
Rao, 2011, Flame synthesis of tungsten oxide nanostructures on diverse substrates, Proc Combust Inst, 33, 1891, 10.1016/j.proci.2010.06.071
Gupta, 2011, Synthesis of tailored WO3 and WOx (2.9 < x < 3) nanoparticles by adjusting the combustion conditions in a H2/O2/Ar premixed flame reactor, Proc Combust Inst, 33, 1883, 10.1016/j.proci.2010.06.162
Hammond, 2013, Nanoparticulate tungsten oxide for catalytic epoxidations, ACS Catal, 3, 321, 10.1021/cs300826c
Samerjai, 2014, NO2 gas sensing of flame-made Pt-loaded WO3 thick films, J. Solid State Chem, 214, 47, 10.1016/j.jssc.2013.10.041
Dong, 2013, Combined flame and electrodeposition synthesis of energetic coaxial tungsten-oxide/aluminum nanowire arrays, Nano Lett, 13, 4346, 10.1021/nl4021446
Jiang, 1999, Synthesis of nanostructured coatings by high-velocity oxygen-fuel thermal spraying, 159
Qiu, 2011, Nanowires of alpha- and beta-Bi2O3: phase-selective synthesis and application in photocatalysis, CrystEngComm, 13, 1843, 10.1039/C0CE00508H
Rudin, 2011, Uniform nanoparticles by flame-assisted spray pyrolysis (FASP) of low cost precursors, J Nanopart Res, 13, 2715, 10.1007/s11051-010-0206-x
Jossen, 2005, Criteria for flame-spray synthesis of hollow, shell-like, or inhomogeneous oxides, J Am Ceram Soc, 88, 1388, 10.1111/j.1551-2916.2005.00249.x
Strobel, 2011, Effect of solvent composition on oxide morphology during flame spray pyrolysis of metal nitrates, Phys Chem Chem Phys, 13, 9246, 10.1039/c0cp01416h
Hinklin, 2006, 1
Glassman, 1992, A gas-phase combustion synthesis process for non-oxide ceramics, Proc Combust Inst, 24, 1877, 10.1016/S0082-0784(06)80220-1
Katz, 1990, Initial studies of electric field effects on ceramic powder formation in flames, Proc Combust Inst, 23, 1733, 10.1016/S0082-0784(06)80450-9
Calcote, 1991, A new flame process for synthesis of Si3N4 powders for advanced ceramics, Proc Combust Inst, 23, 1739, 10.1016/S0082-0784(06)80451-0
Axelbaum, 1996, Gas-phase combustion synthesis of aluminum nitride powder, Proc Combust Inst, 26, 1891, 10.1016/S0082-0784(96)80011-7
Dufaux, 1995, Nanoscale unagglomerated nonoxide particles from a sodium coflow flame, Combust Flame, 100, 350, 10.1016/0010-2180(94)00097-C
Zhang, 1996, Controlled combustion synthesis of nanosized iron oxide aggregates, Proc Combust Inst, 26, 1851, 10.1016/S0082-0784(96)80006-3
Chagger, 1996, The formation of SiO2 from hexamethyldisiloxane combustion in counterflow methane-air flames, Proc Combust Inst, 26, 1859, 10.1016/S0082-0784(96)80007-5
Degussa, 2004
Kuhner, 1993, Manufacture of carbon black
Rosner, 2005, Flame synthesis of valuable nanoparticles: recent progress/current needs in areas of rate laws, population dynamics, and characterization, Ind Eng Chem Res, 44, 6045, 10.1021/ie0492092
Pratsinis, 1996, The role of gas mixing in flame synthesis of titania powders, Powder Technol, 86, 87, 10.1016/0032-5910(95)03041-7
Johannessen, 2001, Computational analysis of coagulation and coalescence in the flame synthesis of titania particles, Powder Technol, 118, 242, 10.1016/S0032-5910(00)00401-0
Wegner, 2003, Scale-up of nanoparticle synthesis in diffusion flame reactors, Chem Eng Sci, 58, 4581, 10.1016/j.ces.2003.07.010
Ehrman, 1998, Characteristics of SiO2/TiO2 nanocomposite particles formed in a premixed flat flame, J Aerosol Sci, 29, 687, 10.1016/S0021-8502(97)00454-0
Kammler, 2005, Monitoring simultaneously the growth of nanoparticles and aggregates by in situ ultra-small-angle x-ray scattering, J Appl Phys, 97, 054309, 10.1063/1.1855391
Arabi-Katbi, 2001, Monitoring the flame synthesis of TiO2 particles by in-situ FTIR spectroscopy and thermophoretic sampling, Combust Flame, 124, 560, 10.1016/S0010-2180(00)00227-3
Kammler, 2002, Flame temperature measurements during electrically assisted aerosol synthesis of nanoparticles, Combust Flame, 128, 369, 10.1016/S0010-2180(01)00357-1
Wooldridge, 2002, An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner, Combust Flame, 131, 98, 10.1016/S0010-2180(02)00403-0
Miller, 2005, A new method for direct preparation of tin dioxide nanocomposite materials, J Mater Res, 20, 2977, 10.1557/JMR.2005.0375
Bakrania, 2007, Combustion of multiphase reactants for the synthesis of nanocomposite materials, Combust Flame, 148, 76, 10.1016/j.combustflame.2006.08.008
Bakrania, 2007, Methane-assisted combustion synthesis of nanocomposite tin dioxide materials, Proc Combust Inst, 31, 1797, 10.1016/j.proci.2006.08.020
Bakrania, 2010, The effects of the location of Au additives on combustion-generated SnO2 nanopowders for CO gas sensing, Sensors (Basel), 10, 7002, 10.3390/s100707002
Ren, 2015, Doping mechanism of vanadia/titania nanoparticles in flame synthesis by a novel optical spectroscopy technique, Proc Combust Inst, 35, 2283, 10.1016/j.proci.2014.05.025
Zhang, 2014, Two-dimensional imaging of gas-to-particle transition in flames by laser-induced nanoplasmas, Appl Phys Lett, 104, 023115, 10.1063/1.4861904
Ren, 2015, Absorption-ablation-excitation mechanism of laser-cluster interactions in a nanoaerosol system, Phys Rev Lett, 114, 093401, 10.1103/PhysRevLett.114.093401
Chung, 1985, The counterflow diffusion flame burner: a new tool for the study of the nucleation of refractory compounds, Combust Flame, 61, 271, 10.1016/0010-2180(85)90108-7
Zachariah, 1989, Silica particle synthesis in a counterflow diffusion flame reactor, Combust Flame, 78, 287, 10.1016/0010-2180(89)90018-7
Memarzadeh, 2011, Properties of nanocrystalline TiO2 synthesized in premixed flames stabilized on a rotating surface, Proc Combust Inst, 33, 1917, 10.1016/j.proci.2010.05.065
Tsantilis, 2004, Soft-and hard-agglomerate aerosols made at high temperatures, Langmuir, 20, 5933, 10.1021/la036389w
Linteris, 2008, Catalytic inhibition of laminar flames by transition metal compounds, Prog Energy Combust Sci, 34, 288, 10.1016/j.pecs.2007.08.002
Glumac, 1998, Scalable high-rate production of non-agglomerated nanopowders in low pressure flames, Mater Lett, 34, 148, 10.1016/S0167-577X(97)00162-6
Wegner, 2003, Nozzle-quenching process for controlled flame synthesis of titania nanoparticles, AIChE J, 49, 1667, 10.1002/aic.690490707
Wegner, 2002, Flame-nozzle synthesis of nanoparticles with closely controlled size, morphology and crystallinity, Mater Lett, 55, 318, 10.1016/S0167-577X(02)00385-3
Migliorini, 2008, How “flat” is the rich premixed flame produced by your McKenna burner?, Combust Flame, 153, 384, 10.1016/j.combustflame.2008.01.007
Senser, 1985, Construction and novel application of a flat flame burner facility to study hazardous waste combustion, Rev Sci Instrum, 56, 1279, 10.1063/1.1137992
Prucker, 1994, A flat flame burner as calibration source for combustion research: temperatures and species concentrations of premixed H2/air flames, Rev Sci Instrum, 65, 2908, 10.1063/1.1144637
Cheskis, 1999, Quantitative measurements of absolute concentrations of intermediate species in flames, Prog Energy Combust Sci, 25, 233, 10.1016/S0360-1285(98)00022-7
Hartung, 2006, A flat flame burner for the calibration of laser thermometry techniques, Meas Sci Technol, 17, 2485, 10.1088/0957-0233/17/9/016
Schulz, 2006, Laser-induced incandescence: recent trends and current questions, Appl Phys B, 83, 333, 10.1007/s00340-006-2260-8
Bladh, 2008, On the dependence of the laser-induced incandescence (LII) signal on soot volume fraction for variations in particle size, Appl Phys B, 90, 109, 10.1007/s00340-007-2826-0
Axelsson, 2000, Laser-induced incandescence for soot particle size and volume fraction measurements using on-line extinction calibration, Appl Phys B, 39, 3683
Vanderwal, 1994, Laser-induced incandescence – development and characterization towards a measurement of soot-volume fraction, Appl Phys B, 59, 445, 10.1007/BF01081067
Ulrich, 1976, Particle growth in flames. II: experimental results for silica particles, Combust Sci Technol, 14, 243, 10.1080/00102207608547532
Ulrich, 1977, Particle growth in flames III. Coalescence as a rate-controlling process, Combust Sci Technol, 17, 119, 10.1080/00102207708946822
Ulrich, 1982, Aggregation and growth of submicron oxide particles in flames, J Colloid Interface Sci, 87, 257, 10.1016/0021-9797(82)90387-3
Hardesty, 1973, Electrical control of particulate pollutants from flames, Symp (Int) Combust, 14, 907, 10.1016/S0082-0784(73)80083-9
Tsantilis, 2002, Population balance modeling of flame synthesis of titania nanoparticles, Chem Eng Sci, 57, 2139, 10.1016/S0009-2509(02)00107-0
Lindackers, 1997, Formation and growth of SiO2 particles in low pressure H2/O2/Ar flames doped with SiH4, Combust Sci Technol, 123, 287, 10.1080/00102209708935632
Janzen, 2001, Formation and characteristics of Fe2O3 nano-particles in doped low pressure H2/O2/Ar flames, Combust Flame, 125, 1150, 10.1016/S0010-2180(01)00235-8
Hancock, 1997, Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner, Combust Flame, 109, 323, 10.1016/S0010-2180(96)00191-5
McLean, 1981, Direct observations of devolatilizing pulverized coal particles in a combustion environment, Symp (Int) Combust, 18, 1239, 10.1016/S0082-0784(81)80127-0
Ma, 1995, Thermophoretic sampling of coal-derived soot particles during devolatilization, Energy Fuels, 9, 802, 10.1021/ef00053a011
Yuan, 2014, The transition of heterogeneous-homogeneous ignitions of dispersed coal particle streams, Combust Flame, 161, 2458, 10.1016/j.combustflame.2014.03.008
Yuan, 2015, Dynamic behavior of sodium release from pulverized coal combustion by phase-selective laser-induced breakdown spectroscopy, Proc Combust Inst, 35, 2339, 10.1016/j.proci.2014.07.016
Memon, 2011, Flame synthesis of graphene films in open environments, Carbon, 49, 5064, 10.1016/j.carbon.2011.07.024
Memon, 2013, Role of substrate, temperature, and hydrogen on the flame synthesis of graphene films, Proc Combust Inst, 34, 2163, 10.1016/j.proci.2012.06.112
Memon, 2013, Transition between graphene-film and carbon-nanotube growth on nickel alloys in open-atmosphere flame synthesis, Chem Phys Lett, 570, 90, 10.1016/j.cplett.2013.03.046
Memon, 2013, Flame synthesis of carbon nanotubes and few-layer graphene on metal-oxide spinel powders, Carbon, 63, 478, 10.1016/j.carbon.2013.07.023
Zhang, 2015, A new diagnostic for volume fraction measurement of metal-oxide nanoparticles in flames using phase-selective laser-induced breakdown spectroscopy, Proc Combust Inst, 35, 3681, 10.1016/j.proci.2014.06.018
Zachariah, 1989, Dynamic light scattering and angular dissymmetry for the in situ measurement of silicon dioxide particle synthesis in flames, Appl Opt, 28, 530, 10.1364/AO.28.000530
Zachariah, 1990, Experimental and numerical studies on refractory particle formation in flames, High Temp Sci, 28, 113
Katz, 1992, Ultrafine refractory particle formation in counterflow diffusion flames, Combust Sci Technol, 82, 169, 10.1080/00102209208951818
Hung, 1992, Formation of mixed-oxide powders in flames. 1. TiO2-SiO2, J Mater Res, 7, 1861, 10.1557/JMR.1992.1861
Hung, 1992, Formation of mixed-oxide powders in flames. 2. SiO2-GeO2 and Al2O3-TiO2, J Mater Res, 7, 1870, 10.1557/JMR.1992.1870
Rulison, 1996, Titania and silica powders produced in a counterflow diffusion flame, J Mater Res, 11, 3083, 10.1557/JMR.1996.0392
Xing, 1997, Morphological evolution of nanoparticles in diffusion flames: measurements and modeling, AIChE J, 43, 2641, 10.1002/aic.690431307
Xing, 1999, In situ light-scattering measurements of morphologically evolving flame-synthesized oxide nanoaggregates, Appl Opt, 38, 2686, 10.1364/AO.38.002686
Miller, 1990, Chemical kinetics and combustion modeling, Annu Rev Phys Chem, 41, 345, 10.1146/annurev.pc.41.100190.002021
Bergthorson, 2005, Particle streak velocimetry and CH laser-induced fluorescence diagnostics in strained, premixed, methane-air flames, Proc Combust Inst, 30, 1637, 10.1016/j.proci.2004.08.105
Tolmachoff, 2009, Synthesis of nano-phase TiO2 crystalline films over premixed stagnation flames, Proc Combust Inst, 32, 1839, 10.1016/j.proci.2008.06.052
Murayama, 1991, Uniform deposition of diamond films using a flat flame stabilized in the stagnation-point flow, J Appl Phys, 69, 7924, 10.1063/1.347484
Murayama, 1992, Synthesis of uniform diamond films by flat flame combustion of acetylene/hydrogen/oxygen mixtures, Combust Flame, 91, 239, 10.1016/0010-2180(92)90056-U
Meeks, 1993, Computational simulation of diamond chemical vapor deposition in premixed C2H2/O2/H2 and CH4/O2-strained flames, Combust Flame, 92, 144, 10.1016/0010-2180(93)90204-G
Bertagnolli, 1997, Temperature profile measurements in stagnation-flow, diamond-forming flames using hydrogen cars spectroscopy, Proc Combust Inst, 26, 1825, 10.1016/S0082-0784(96)80003-8
Zhao, 2005, Ultrafine anatase TiO2 nanoparticles produced in premixed ethylene stagnation flame at 1 atm, Proc Combust Inst, 30, 2569, 10.1016/j.proci.2004.08.146
Zhao, 2007, A comparative study of nanoparticles in premixed flames by scanning mobility particle sizer, small angle neutron scattering, and transmission electron microscopy, Proc Combust Inst, 31, 851, 10.1016/j.proci.2006.08.064
Zhao, 2008, Control of nanoparticle size and agglomeration through electric-field-enhanced flame synthesis, J Nanopart Res, 10, 907, 10.1007/s11051-007-9330-7
Zhao, 2009, Effects of pressure and precursor loading in the flame synthesis of titania nanoparticles, J Aerosol Sci, 40, 919, 10.1016/j.jaerosci.2009.07.004
Thimsen, 2007, Nanostructured photoactive films synthesized by a flame aerosol reactor, AIChE J, 53, 1727, 10.1002/aic.11210
Thimsen, 2008, Nanostructured TiO2 films with controlled morphology synthesized in a single step process: performance of dye-sensitized solar cells and photo water-splitting, J Phys Chem, 112, 4134
Zhang, 2012, Nanoparticle transport and deposition in boundary layer of stagnation-point premixed flames, Powder Technol, 227, 24, 10.1016/j.powtec.2011.12.035
Libby, 1983, Strained premixed laminar flames under nonadiabatic conditions, Combust Sci Technol, 31, 1, 10.1080/00102208308923629
Li, 2010
Meierhofer, 2014, Investigation of atomization concepts for large-scale flame spray pyrolysis (FSP), Materwiss Werksttech, 45, 765, 10.1002/mawe.201400314
Rosebrock, 2013, Disruptive burning of precursor/solvent droplets in flame-spray synthesis of nanoparticles, AIChE J, 59, 4553, 10.1002/aic.14234
Chen, 1995, Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1.8 µm diameter range, J Aerosol Sci, 26, 963, 10.1016/0021-8502(95)00027-A
Rosell-Llompart, 1994, Generation of monodisperse droplets 0.3 to 4 µm in diameter from electrified conejets of highly conducting and viscous liquids, J Aerosol Sci, 25, 1093, 10.1016/0021-8502(94)90204-6
Ganan-Calvo, 1997, Current and droplet size in the electrospraying of liquids. Scaling laws, J Aerosol Sci, 28, 249, 10.1016/S0021-8502(96)00433-8
Almería, 2011, A multiplexed electrospray process for single-step synthesis of stabilized polymer particles for drug delivery, J Control Release, 154, 203, 10.1016/j.jconrel.2011.05.018
Okuyama, 2003, Preparation of nanoparticles via spray route, Chem Eng Sci, 58, 537, 10.1016/S0009-2509(02)00578-X
Nandiyanto, 2011, Progress in developing spray-drying methods for the production of controlled morphology particles: from the nanometer to submicrometer size ranges, Adv Powder Technol, 22, 1, 10.1016/j.apt.2010.09.011
Biswas, 1997, Characterization of iron oxide-silica nanocomposites in flames. 2. Comparison of discrete-sectional model predictions to experimental data, J Mater Res, 12, 714, 10.1557/JMR.1997.0106
Yang, 1998, Processing titania based materials in flame aerosol reactors: from dopants to nanocomposites, J Aerosol Sci, 29, 129, 10.1016/S0021-8502(98)00189-X
Wang, 2001, Processing of iron-doped titania powders in flame aerosol reactors, Powder Technol, 114, 197, 10.1016/S0032-5910(00)00321-1
Worathanakul, 2008, Quench-ring assisted flame synthesis of SiO2-TiO2 nanostructured composite, J Nanosci Nanotechnol, 8, 6253, 10.1166/jnn.2008.18379
Sahu, 2011, Single-step processing of copper-doped titania nanomaterials in a flame aerosol reactor, Nanoscale Res Lett, 6, 1, 10.1186/1556-276X-6-441
Sahu, 2012, In situ charge characterization of TiO2 and Cu-TiO2 nanoparticles in a flame aerosol reactor, J Nanopart Res, 14, 1, 10.1007/s11051-011-0678-3
Schaub, 2003, Oxygen-mediated diffusion of oxygen vacancies on the TiO2(110), Surf Sci, 299, 377
Lopez, 2004, The adhesion and shape of nanosized Au particles in a Au/TiO2 catalyst, J Catal, 225, 86, 10.1016/j.jcat.2004.03.036
Kwak, 2009, Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3, Science, 325, 1670, 10.1126/science.1176745
Pisduangdaw, 2011, Flame sprayed tri-metallic Pt–Sn–X/Al2O3 catalysts (X = Ce, Zn, and K) for propane dehydration, Catal Commun, 12, 1161, 10.1016/j.catcom.2011.04.002
Kim, 2010, Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust, Science, 327, 1624, 10.1126/science.1184087
Rossetti, 2001, Catalytic flameless combustion of methane over perovskites prepared by flame–hydrolysis, Appl Catal B, 33, 345, 10.1016/S0926-3373(01)00194-1
Chen, 2011, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science, 331, 746, 10.1126/science.1200448
Prabhu, 2014, Synthesis, surface acidity and photocatalytic activity of WO3/TiO2 nanocomposites-an overview, Mater Sci Forum, 781, 63, 10.4028/www.scientific.net/MSF.781.63
Tanaka, 1991, Effect of crystallinity of TiO2 on its photocatalytic action, Chem Phys Lett, 187, 73, 10.1016/0009-2614(91)90486-S
Qin, 2007, Flame synthesis and characterization of rare-earth (Er3+, Ho3+, and Tm3+) doped upconversion nanophosphors, Appl Phys Lett, 90, 073104, 10.1063/1.2561079
Zhi, 2013, Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review, Nanoscale, 5, 72, 10.1039/C2NR32040A
Ko, 2014, One-pot synthesis of manganese oxide-carbon composite microspheres with three dimensional channels for Li-ion batteries, Sci Rep, 4, 5751, 10.1038/srep05751
Guo, 2012, Interdispersed amorphous MnOx–carbon nanocomposites with superior electrochemical performance as lithium-storage material, Adv Funct Mater, 22, 803, 10.1002/adfm.201102137
Poizot, 2000, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature, 407, 496, 10.1038/35035045
Gerhardt, 1988, The formation of polyhedral carbon ions in fuel-rich acetylene and benzene flames, Proc Combust Inst, 22, 395, 10.1016/S0082-0784(89)80046-3
Bachmann, 1996, PAH and aromers: precursors of fullerenes and soot, Proc Combust Inst, 26, 2259, 10.1016/S0082-0784(96)80053-1
Howard, 1992, Fullerene formation in flames, Proc Combust Inst, 24, 933, 10.1016/S0082-0784(06)80111-6
Grieco, 1998, Fullerenes and PAH in low-pressure premixed benzene/oxygen flames, Proc Combust Inst, 27, 1669, 10.1016/S0082-0784(98)80006-4
Richter, 1997, Generation of higher fullerenes in flames, J Phys Chem B, 101, 1556, 10.1021/jp962928c
Hebgen, 2000, Synthesis of fullerenes and fullerenic nanostructures in a low-pressure benzene/oxygen diffusion flame, Proc Combust Inst, 28, 1397, 10.1016/S0082-0784(00)80355-0
Duan, 1994, Nanoclusters produced in flames, J Phys Chem, 98-49, 12815, 10.1021/j100100a001
Chowdhury, 1996, Fullerenic nanostructures in flames, J Mater Res, 11, 341, 10.1557/JMR.1996.0040
Baker, 1989, Catalytic growth of carbon filaments, Carbon, 27, 315, 10.1016/0008-6223(89)90062-6
Oberlin, 1976, Filamentous growth of carbon through benzene decomposition, J Cryst Growth, 32, 335, 10.1016/0022-0248(76)90115-9
Dai, 1996, Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide, Chem Phys Lett, 260, 471, 10.1016/0009-2614(96)00862-7
Serp, 2009, 309
RE Smalley, R Davis-Floyd, KJ Cox, Bucky Balls, Fullerenes, and the Future: An Oral History Interview with Professor Richard E. Smalley, January 222000.
Nikolaev, 1999, Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chem Phys Lett, 313, 91, 10.1016/S0009-2614(99)01029-5
Vander Wal, 2001, Flame synthesis of Fe catalyzed single-walled carbon nanotubes and Ni catalyzed nanofibers: growth mechanisms and consequences, Chem Phys Lett, 349, 178, 10.1016/S0009-2614(01)01198-8
Rodriguez, 1993, A review of catalytically grown carbon nanofibers, J Mater Res, 8-12, 3233, 10.1557/JMR.1993.3233
Diener, 2000, Synthesis of single-walled carbon nanotubes in flames, J Phys Chem B, 104, 9615, 10.1021/jp001233f
Pope, 1993, Chemistry of fullerenes C60 and C70 formation in flames, J Phys Chem, 97, 11001, 10.1021/j100144a018
Homann, 1998, Fullerenes and soot formation – new pathways to large particles in flames, Angew Chem Int Ed Engl, 37, 2434, 10.1002/(SICI)1521-3773(19981002)37:18<2434::AID-ANIE2434>3.0.CO;2-L
Vander Wal, 2000, Diffusion flame synthesis of single-walled carbon nanotubes, Chem Phys Lett, 323, 217, 10.1016/S0009-2614(00)00522-4
Merchan-Merchan, 2002, Formation of carbon nanotubes in counter-flow, oxy-methane diffusion flames without catalysts, Chem Phys Lett, 354, 20, 10.1016/S0009-2614(02)00027-1
Unrau, 2007, Synthesis of single-walled carbon nanotubes in oxy-fuel inverse diffusion flames with online diagnostics, Proc Combust Inst, 31, 1865, 10.1016/j.proci.2006.08.009
Vander Wal, 2002, Ferrocene as a precursor reagent for metal-catalyzed carbon nanotubes: competing effects, Combust Flame, 130, 27, 10.1016/S0010-2180(02)00358-9
Vander Wal, 2002, Fe-catalyzed single-walled carbon nanotube synthesis within a flame environment, Combust Flame, 130, 37, 10.1016/S0010-2180(02)00360-7
Vander Wal, 2001, Flame and furnace synthesis of single-walled and multi-walled carbon nanotubes and nanofibers, J Phys Chem B, 105, 10249, 10.1021/jp012838u
Vander Wal, 2001, Comparative flame and furnace synthesis of single-walled carbon nanotubes, Chem Phys Lett, 336, 24, 10.1016/S0009-2614(01)00114-2
Height, 2003
Goel, 2002, Combustion synthesis of fullerenes and fullerenic nanostructures, Carbon, 40, 177, 10.1016/S0008-6223(01)00170-1
Height, 2004, Flame synthesis of single-walled carbon nanotubes, Carbon, 42, 2295, 10.1016/j.carbon.2004.05.010
Zak, 2008
Dato, 2008, Substrate-free gas-phase synthesis of graphene sheets, Nano Lett, 8, 2012, 10.1021/nl8011566
Dato, 2010, Substrate-free microwave synthesis of graphene: experimental conditions and hydrocarbon precursors, New J Phys, 12, 125013, 10.1088/1367-2630/12/12/125013
Minutolo, 2014, Characterization of flame-generated 2-D carbon nano-disks, Carbon, 68, 138, 10.1016/j.carbon.2013.10.073
Mostofizadeh, 2011, Synthesis, properties, and applications of low-dimensional carbon-related nanomaterials, J Nanomater, 16
Staver, 1984, The flow in a shock tube in the presence of suspended particles, Fizika Goreniya I Vzryza, 20
Greiner, 1988, Diamonds in detonation soot, Nature, 333, 440, 10.1038/333440a0
Howard, 1990, Synthesis of diamond powder in acetylene oxygen plasma, J Appl Phys, 68, 1247, 10.1063/1.346725
Chen, 2009, Role of carbon in titania as visible-light photocatalyst prepared by flat-flame chemical vapor condensation method, J Vac Sci Technol A, 27, 862, 10.1116/1.3081889
Al-Sharab, 2011, Flame synthesis of C-doped TiO2 nanopowders for dye sensitized solar cells, Microsc Microanal, 17, 1694, 10.1017/S1431927611009342
An, 2010, Aerosol-chemical vapor deposition method for synthesis of nanostructured metal oxide thin films with controlled morphology, J Phys Chem Lett, 1, 249, 10.1021/jz900156d
Hunt, 1993, Combustion chemical vapor deposition: a novel thin-film deposition technique, Appl Phys Lett, 63, 266, 10.1063/1.110362
Polley, 1999, Deposition of zinc oxide thin films by combustion CVD, Thin Solid Films, 357, 132, 10.1016/S0040-6090(99)00646-X
Liu, 2004, Novel nanostructured electrodes for solid oxide fuel cells fabricated by combustion chemical vapor deposition (CVD), Adv Mater, 16, 256, 10.1002/adma.200305767
Choy, 1997, Fabrication of cathode for solid oxide fuel cells using flame assisted vapour deposition technique, Solid State Ion, 96, 49, 10.1016/S0167-2738(97)00013-1
Meng, 2004, Application of novel aerosol-assisted chemical vapor deposition techniques for SOFC thin films, Solid State Ion, 175, 29, 10.1016/j.ssi.2004.09.038
Maric, 2011, Flame-based technologies and reactive spray deposition technology for low-temperature solid oxide fuel cells: technical and economic aspects, J Therm Spray Technol, 20, 696, 10.1007/s11666-011-9645-x
Maric, 2010, Reactive spray deposition technology–an one-step deposition technique for solid oxide fuel cell barrier layers, J Power Sources, 195, 8198, 10.1016/j.jpowsour.2010.06.053
Maric, 2008, Low Pt thin cathode layer catalyst layer by reactive spray deposition technology, ECS Trans, 12, 59, 10.1149/1.2921533
Neagu, 2009, Characterisation and performance of SOFC components made by reactive spray deposition technology, ECS Trans, 25, 2481, 10.1149/1.3205803
Jain, 2014, Synthesis of nano-Pt onto ceria support as catalyst for water–gas shift reaction by reactive spray deposition technology, Appl Catal A Gen, 475, 461, 10.1016/j.apcata.2014.01.053
Batchelor, 1985, Thermophoretic deposition of particles in gas flowing over cold surfaces, J Colloid Interface Sci, 107, 21, 10.1016/0021-9797(85)90145-6
Thomson, 1928, vol. 1, 399
Calcote, 1948, Electrical properties of flames: burner flames in transverse electric fields, Symposium on Combustion and Flame, and Explosion Phenomena, 3, 245, 10.1016/S1062-2896(49)80033-X
Lawton, 1969
Brande, 1814, The Bakerian lecture: on some new electrochemical phenomena, Philos Trans R Soc Lond, 104, 51
Jaggers, 1971, The effect of electric fields on the burning velocity of various flames, Combust Flame, 16, 275, 10.1016/S0010-2180(71)80098-6
Bowser, 1972, The effect of direct electric fields on normal burning velocity, Combust Flame, 18, 296, 10.1016/S0010-2180(72)80141-X
Jaggers, 1972, The effect of electric fields on burning velocity, Combust Flame, 19, 135, 10.1016/S0010-2180(72)80095-6
Berman, 1993
Maupin, 1994, Electrical perturbation of cellular premixed propane/air flames, Combust Flame, 97, 435, 10.1016/0010-2180(94)90034-5
Kono, 1989, The effect of nonsteady electric fields on sooting flames, Combust Flame, 78, 357, 10.1016/0010-2180(89)90023-0
Saito, 1997, Variation of flame shape and soot emission by applying electric field, J Electrostat, 39, 305, 10.1016/S0304-3886(97)00127-7
Saito, 1999, Control of soot emitted from acetylene diffusion flames by applying an electric field, Combust Flame, 119, 356, 10.1016/S0010-2180(99)00065-6
Berman, 1987
Xie, 1992, Investigation of the effect of electric fields on soot formation and flame structure of diffusion flames, Proc Combust Inst, 24, 1059, 10.1016/S0082-0784(06)80125-6
Berman, 1991, PD-vol. 33, 71
Sher, 1992, Extinction of pool flames by means of a DC electric field, Combust Flame, 94, 244, 10.1016/0010-2180(93)90071-A
Sher, 1992, Extinction of flames in a nonuniform electric field, Combust Sci Technol, 87, 59, 10.1080/00102209208947207
Ohisa, 1999, Control of soot emission of a turbulent diffusion flame by DC or AC corona discharges, Combust Flame, 116, 653, 10.1016/S0010-2180(98)00054-6
Onda, 1997, Electric discharge removal of SO2 and NOx from combustion flue gas by pulsed corona discharge, Energy Convers Manag, 38, 1377, 10.1016/S0196-8904(96)00167-7
Chattock, 1899, On the velocity and mass of ions in the electric wind in air, Philos Mag, 48, 410, 10.1080/14786449908621431
Vemury, 1995, Corona-assisted flame synthesis of ultrafine titania particles, Appl Phys Lett, 66, 3275, 10.1063/1.113402
Vemury, 1997, Electrically controlled flame synthesis of nanophase TiO2, SiO2, and SnO2 powders, J Mater Res, 12, 1031, 10.1557/JMR.1997.0144
Morrison, 1997, In situ Fourier transform infrared characterization of the effect of electrical fields on the flame synthesis of TiO2 particles, Chem Mater, 9, 2702, 10.1021/cm960508u
Kammler, 2000, Electrically-assisted flame aerosol synthesis of fumed silica at high production rates, Chem Eng Process, 39, 219, 10.1016/S0255-2701(99)00082-3
Fialkov, 1997, Investigations on ions in flames, Prog Energy Combust Sci, 23, 399, 10.1016/S0360-1285(97)00016-6
Katzer, 2001, The effects of electrical fields on growth of titania particles formed in a CH4-O2 diffusion flame, J Aerosol Sci, 32, 1045, 10.1016/S0021-8502(01)00041-6
Merchan-Merchan, 2006, Flame nanotube synthesis in moderate electric fields: from alignment and growth rate effects to structural variations and branching phenomena, Carbon, 44, 3308, 10.1016/j.carbon.2006.06.025
Xu, 2006, Synthesis of carbon nanotubes on metal alloy substrates with voltage bias in methane inverse diffusion flames, Carbon, 44, 570, 10.1016/j.carbon.2005.07.043
Xu, 2007, Carbon nanotube synthesis on catalytic metal alloys in methane/air counterflow diffusion flames, Proc Combust Inst, 31, 1839, 10.1016/j.proci.2006.08.062
Tolmachoff, 2011, Nanoporous titania gas sensing films prepared in a premixed stagnation flame, J Phys Chem C, 115, 21620, 10.1021/jp206061h
Nikraz, 2012, Mesoporous titania films prepared by flame stabilized on a rotating surface: application in dye sensitized solar cells, J Phys Chem C, 116, 5342, 10.1021/jp2095533
Geng, 2008, A facile coordination compound precursor route to controlled synthesis of Co3O4 nanostructures and their room-temperature gas sensing properties, J Mater Chem, 18, 4977, 10.1039/b805378b
Li, 2005, Co3O4 nanomaterials in lithium-ion batteries and gas sensors, Adv Funct Mater, 15, 851, 10.1002/adfm.200400429
Gou, 2008, Chemical synthesis, characterisation and gas sensing performance of copper oxide nanoribbons, J Mater Chem, 18, 965, 10.1039/b716745h
Zhang, 2007, Gas-sensing properties of hollow and hierarchical copper oxide microspheres, Sens Actuators B Chem, 128, 293, 10.1016/j.snb.2007.06.013
Tricoli, 2008, Micropatterning layers by flame aerosol deposition-annealing, Adv Mater, 20, 3005, 10.1002/adma.200701844
Tuominen, 2014, Creation of superhydrophilic surfaces of paper and board, J Adhes Sci Technol, 28, 864, 10.1080/01694243.2012.697744
Zhao, 2003, Measurement and numerical simulation of soot particle size distribution functions in a laminar premixed ethylene-oxygen-argon flame, Combust Flame, 133, 173, 10.1016/S0010-2180(02)00574-6
Scheckman, 2009, Rapid characterization of agglomerate aerosols by in situ mass−mobility measurements, Langmuir, 25, 8248, 10.1021/la900441e
Wang, 2015, Kinetics of sub-2 nm TiO2 particle formation in an aerosol reactor during thermal decomposition of titanium tetraisopropoxide, J Nanopart Res, 17, 1, 10.1007/s11051-015-2964-y
McCormick, 2004, Thermal stability of flame-synthesized anatase TiO2 nanoparticles, J Phys Chem B, 108, 17398, 10.1021/jp046874f
Han, 2003, The aggregation of thermally stable particles in a premixed flat flame aerosol reactor, Aerosol Sci Technol, 37, 550, 10.1080/02786820300926
Gröhn, 2014
Ober, 2002, Aerosol measurement in low-pressure systems with standard scanning mobility particle sizers, Part Part Syst Charact, 19, 229, 10.1002/1521-4117(200208)19:4<229::AID-PPSC229>3.0.CO;2-8
Whitby, 1995, Development of a low-pressure aerosol sampler, Rev Sci Instrum, 66, 3955, 10.1063/1.1145401
Roth, 1994, Design and test of a particle mass spectrometer (PMS), J Aerosol Sci, 25, 61, 10.1016/0021-8502(94)90182-1
Fang, 2014, Measurement of sub-2 nm clusters of pristine and composite metal oxides during nanomaterial synthesis in flame aerosol reactors, Anal Chem, 86, 7523, 10.1021/ac5012816
Wang, 2014, Application of half mini DMA for sub 2 nm particle size distribution measurement in an electrospray and a flame aerosol reactor, J Aerosol Sci, 71, 52, 10.1016/j.jaerosci.2014.01.007
Zhang, 2013, Novel low-intensity phase-selective laser-induced breakdown spectroscopy of TiO2 nanoparticle aerosols during flame synthesis, Combust Flame, 160, 725, 10.1016/j.combustflame.2012.11.007
Liu, 2010, In situ Raman characterization of nanoparticle aerosols during flame synthesis, Appl Phys B, 100, 643, 10.1007/s00340-010-4091-x
Allendorf, 1989, Temperature measurements in a vapor axial deposition flame by spontaneous Raman spectroscopy, J Appl Phys, 66, 5046, 10.1063/1.343778
Hwang, 2001, Measurements of temperature and OH radical distributions in a silica generating flame using CARS and PLIF, J Aerosol Sci, 32, 601, 10.1016/S0021-8502(00)00106-3
Kim, 2005, Numerical and experimental study on silica generating counterflow diffusion flames, Int J Heat Mass Transf, 48, 75, 10.1016/j.ijheatmasstransfer.2004.06.040
Glumac, 1998, Diagnostics and modeling of nanopowder synthesis in low pressure flames, J Mater Res, 13, 2572, 10.1557/JMR.1998.0359
Kronemayer, 2007, Gas-temperature imaging in a low-pressure flame reactor for nano-particle synthesis with multi-line NO-LIF thermometry, Appl Phys B, 88, 373, 10.1007/s00340-007-2721-8
Hecht, 2009, Imaging measurements of atomic iron concentration with laser-induced fluorescence in a nanoparticle synthesis flame reactor, Appl Phys B, 94, 119, 10.1007/s00340-008-3283-0
Camenzind, 2008, Nanostructure evolution: from aggregated to spherical SiO2 particles made in diffusion flames, Eur J Inorg Chem, 6, 911, 10.1002/ejic.200701080
Eckbreth, 1996
Best, 1991, Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: species concentrations and temperatures, Combust Flame, 85, 309, 10.1016/0010-2180(91)90136-Y
Markham, 1991, FT-IR emission/transmission tomography of a coal flame, Symp (Int) Combust, 23, 1869, 10.1016/S0082-0784(06)80468-6
Muramoto, 2000, Spectroscopic imaging of nanoparticles in laser ablation plume by redecomposition and laser-induced fluorescence detection, Appl Phys Lett, 77, 2334, 10.1063/1.1316780
Glumac, 2001, Formation and consumption of SiO in powder synthesis flames, Combust Flame, 124, 702, 10.1016/S0010-2180(00)00247-9
McMillin, 1996, In situ characterization of vapor phase growth of iron oxide-silica nanocomposites: part I. 2-D planar laser-induced fluorescence and Mie imaging, J Mater Res, 11, 1552, 10.1557/JMR.1996.0194
Biswas, 1997, In situ immobilization of lead species in combustion environments by injection of gas phase silica sorbent precursors, Environ Sci Technol, 31, 2455, 10.1021/es9700663
Colibaba-Evulet, 2000, Detection of AIO and TiO by laser-induced fluorescence in powder synthesis flames, Combust Sci Technol, 157, 129, 10.1080/00102200008947313
Bailey, 2003, Laser-induced-fluorescence detection of SnO in low-pressure particle-synthesis flames, Appl Phys B, 77, 455, 10.1007/s00340-003-1256-x
Lee, 2010, Determination of particle temperatures in a silica-generating counterflow flame via flame emission measurements, Int J Heat Mass Transf, 53, 564, 10.1016/j.ijheatmasstransfer.2009.09.036
Burkert, 2013, Si and SiO detection in a HMDSO/propane/air flame using spatially resolved optical emission spectroscopy (OES), J Quant Spectrosc Radiat Transf, 114, 101, 10.1016/j.jqsrt.2012.08.020
Yang, 1997, Study of the sintering of nanosized titania agglomerates in flames using in situ light scattering measurements, Aerosol Sci Technol, 27, 507, 10.1080/02786829708965491
Beaucage, 2004, Probing the dynamics of nanoparticle growth in a flame using synchrotron radiation, Nat Mater, 3, 370, 10.1038/nmat1135
Heine, 2005, Droplet and particle dynamics during flame spray synthesis of nanoparticles, Ind Eng Chem Res, 44, 6222, 10.1021/ie0490278
Shaddix, 1996, Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames, Combust Flame, 107, 418, 10.1016/S0010-2180(96)00107-1
Cignoli, 2009, Laser-induced incandescence of titania nanoparticles synthesized in a flame, Appl Phys B, 96, 593, 10.1007/s00340-009-3528-6
Lehre, 2005, Time-resolved two-color LII: size distributions of nano-particles from gas-to-particle synthesis, Proc Combust Inst, 30, 2585, 10.1016/j.proci.2004.08.113
Maffi, 2008, Spectral effects in laser induced incandescence application to flame-made titania nanoparticles, Spectrochim Acta Part B At Spectrosc, 63, 202, 10.1016/j.sab.2007.11.022
Sipkens, 2014, In situ nanoparticle size measurements of gas-borne silicon nanoparticles by time-resolved laser-induced incandescence, Appl Phys B, 116, 623, 10.1007/s00340-013-5745-2
Amodeo, 2008, On-line monitoring of composite nanoparticles synthesized in a pre-industrial laser pyrolysis reactor using laser-induced breakdown spectroscopy, Spectrochim Acta Part B At Spectrosc, 63, 1183, 10.1016/j.sab.2008.09.005
Mukherjee, 2006, Quantitative laser-induced breakdown spectroscopy for aerosols via internal calibration: application to the oxidative coating of aluminum nanoparticles, J Aerosol Sci, 37, 677, 10.1016/j.jaerosci.2005.05.005
Kulkarni, 2011
Graham, 1973, Coagulation of molten lead aerosols, Faraday Symp Chem Soc, 7, 85, 10.1039/fs9730700085
Velazco-Roa, 2007, Estimation of complex refractive index of polydisperse particulate systems from multiple-scattered ultraviolet-visible-near-infrared measurements, Appl Opt, 46, 3730, 10.1364/AO.46.003730
Ma, 2005, Measurement of aerosol size distribution functions by wavelength-multiplexed laser extinction, Appl Phys B, 81, 567, 10.1007/s00340-005-1913-3
Beretta, 1984, Drop size and concentration in a spray by sideward laser light scattering measurements, Combust Sci Technol, 36, 19, 10.1080/00102208408923723
Ma, 2007, Measurement of aerosol size distribution function using Mie scattering-mathematical considerations, J Aerosol Sci, 38, 1150, 10.1016/j.jaerosci.2007.08.003
Sorensen, 2001, Light scattering by fractal aggregates: a review, Aerosol Sci Technol, 35, 648, 10.1080/02786820117868
Feigin, 1987, 68
Hyeon-Lee, 1998, Fractal analysis of flame-synthesized nanostructured silica and titania powders using small-angle X-ray scattering, Langmuir, 14, 5751, 10.1021/la980308s
Bassi, 2005, Raman spectroscopy characterization of titania nanoparticles produced by flame pyrolysis: the influence of size and stoichiometry, J Appl Phys, 98, 074305, 10.1063/1.2061894
Mewes, 1997, Soot volume fraction and particle size measurements with laser-induced incandescence, Appl Opt, 36, 709, 10.1364/AO.36.000709
Michelsen, 2007, Modeling laser-induced incandescence of soot: a summary and comparison of LII models, Appl Phys B, 87, 503, 10.1007/s00340-007-2619-5
Filippov, 1999, In-situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination, J Aerosol Sci, 30, 71, 10.1016/S0021-8502(98)00021-4
Starke, 2003, Nano-particle sizing by laser-induced-incandescence (LII) in a shock wave reactor, Shock Waves, 12, 351, 10.1007/s00193-003-0178-1
Eremin, 2011, Size dependence of complex refractive index function of growing nanoparticles, Appl Phys B, 104, 285, 10.1007/s00340-011-4420-8
Sipkens, 2013, Sizing of molybdenum nanoparticles using time-resolved laser-induced incandescence, J Heat Transfer, 135, 052401, 10.1115/1.4023227
Eremin, 2008, Influence of the bath gas on the condensation of supersaturated iron atom vapour at room temperature, J Phys D Appl Phys, 41, 055203, 10.1088/0022-3727/41/5/055203
Vander Wal, 1999, Laser-induced incandescence applied to metal nanostructures, Appl Opt, 38, 5867, 10.1364/AO.38.005867
Murakami, 2005, Laser-induced incandescence study on the metal aerosol particles as the effect of the surrounding gas medium, J Phys Chem A, 109, 8994, 10.1021/jp058044n
Tsantilis, 1999, Simulation of synthesis of palladium nanoparticles in a jet aerosol flow condenser, J Aerosol Sci, 30, 785, 10.1016/S0021-8502(98)00764-2
Rosner, 2002, Bivariate moment simulation of coagulating and sintering nanoparticles in flames, AIChE J, 48, 476, 10.1002/aic.690480307
D'Alessio, 2005, Surface deposition and coagulation efficiency of combustion generated nanoparticles in the size range from 1 to 10 nm, Proc Combust Inst, 30, 2595, 10.1016/j.proci.2004.08.267
Kobata, 1991, Growth and transformation of TiO2 crystallites in aerosol reactor, AIChE J, 37, 347, 10.1002/aic.690370305
Zachariah, 1990, Controlled nucleation in aerosol reactors for suppression of agglomerate formation: a numerical study, Aerosol Sci Technol, 13, 413, 10.1080/02786829008959456
Ramkrishna, 2014, Population balance modeling: current status and future prospects, Annu Rev Chem Biomol Eng, 5, 123, 10.1146/annurev-chembioeng-060713-040241
Kelton, 2010, vol. 15
Smoluchowski, 1917, Versuch einer mathematischen theorie der koagulationskinetik kolloide lösunger, Z Phys Chemie, 92, 129
Friedlander, 2000
Lee, 2001, A survey of numerical solutions to the coagulation equation, J Phys A Math Gen, 34, 10219, 10.1088/0305-4470/34/47/323
Alexopoulos, 2005, Part II: dynamic evolution of the particle size distribution in particulate processes undergoing simultaneous particle nucleation, growth and aggregation, Chem Eng Sci, 60, 4157, 10.1016/j.ces.2005.02.052
McGraw, 1997, Description of aerosol dynamics by the quadrature method of moments, Aerosol Sci Technol, 27, 255, 10.1080/02786829708965471
Frenklach, 2002, Method of moments with interpolative closure, Chem Eng Sci, 57, 2229, 10.1016/S0009-2509(02)00113-6
Wei, 2013, A GPU-based parallelized Monte-Carlo method for particle coagulation using an acceptance–rejection strategy, Chem Eng Sci, 104, 451, 10.1016/j.ces.2013.08.008
Zhao, 2009, Reducing statistical noise and extending the size spectrum by applying weighted simulation particles in Monte Carlo simulation of coagulation, Aerosol Sci Technol, 43, 781, 10.1080/02786820902939708
Rigopoulos, 2010, Population balance modelling of polydispersed particles in reactive flows, Prog Energy Combust Sci, 36, 412, 10.1016/j.pecs.2009.12.001
Prakash, 2003, A simple numerical algorithm and software for solution of nucleation, surface growth, and coagulation problems, Aerosol Sci Technol, 37, 892, 10.1080/02786820300933
Mukherjee, 2006, Implementation of a discrete nodal model to probe the effect of size-dependent surface tension on nanoparticle formation and growth, J Aerosol Sci, 37, 1388, 10.1016/j.jaerosci.2006.01.008
Johannessen, 2000, Computational fluid-particle dynamics for the flame synthesis of alumina particles, Chem Eng Sci, 55, 177, 10.1016/S0009-2509(99)00183-9
Mühlenweg, 2002, Process simulation of gas-to-particle-synthesis via population balances: investigation of three models, Chem Eng Sci, 57, 2305, 10.1016/S0009-2509(02)00119-7
Rosner, 2003, Ind Eng Chem Res, 42, 2699, 10.1021/ie020627l
Rosner, 2006, Improved rate laws and population balance simulation methods; CRE applications, including the combustion synthesis of valuable nano-particles, Int J Chem React Eng, 4
Koch, 1990, The effect of particle coalescence on the surface area of a coagulating aerosol, J Colloid Interface Sci, 140, 419, 10.1016/0021-9797(90)90362-R
Akroyd, 2011, A coupled CFD-population balance approach for nanoparticle synthesis in turbulent reacting flows, Chem Eng Sci, 66, 3792, 10.1016/j.ces.2011.05.006
Mehta, 2013, On the role of gas-phase and surface chemistry in the production of titania nanoparticles in turbulent flames, Chem Eng Sci, 104, 1003, 10.1016/j.ces.2013.10.039
Raman, 2016, Modeling of fine-particle formation in turbulent flames, Annu Rev Fluid Mech, 48, 159, 10.1146/annurev-fluid-122414-034306
Seto, 1995, Evaluation of sintering of nanometer-sized titania using aerosol method, Aerosol Sci Technol, 23, 183, 10.1080/02786829508965303
Battiston, 1999, Metal organic CVD of nanostructured composite TiO2-Pt thin films: a kinetic approach, Chem Vap Deposition, 5, 13, 10.1002/(SICI)1521-3862(199901)5:1<13::AID-CVDE13>3.0.CO;2-#
Kuwana, 2007, Modeling ferrocene reactions and iron nanoparticle formation: application to CVD synthesis of carbon nanotubes, Proc Combust Inst, 31, 1857, 10.1016/j.proci.2006.07.097
Bhattacharjee, 2014, Thermal decomposition study of Ferrocene [(C5H5)2Fe], J Exp Phys, 2014, 10.1155/2014/513268
Galembeck, 2002, Bismuth vanadate synthesis by metallo-organic decomposition: thermal decomposition study and particle size control, J Mater Sci, 37, 1923, 10.1023/A:1015206426473
Zhao, 1995, Study of hydrolysis kinetics of tetraethyl orthosilicate in the preparation of monodisperse silica system, Acta Phys Chim Sin, 11, 612, 10.3866/PKU.WHXB19950709
Shmakov, 2013, Combustion chemistry of Ti(OC3H7)4 in premixed flat burner-stabilized H2/O2/Ar flame at 1atm, Proc Combust Inst, 34, 1143, 10.1016/j.proci.2012.05.081
Menz, 2013, A new model for silicon nanoparticle synthesis, Combust Flame, 160, 947, 10.1016/j.combustflame.2013.01.014
Marlow, 1980, Derivation of aerosol collision rates for singular attractive contact potentials, J Chem Phys, 73, 6284, 10.1063/1.440126
Marlow, 1980, Lifshitz-van der Waals forces in aerosol particle collisions. I. Introduction: water droplets, J Chem Phys, 73, 6288, 10.1063/1.440127
Kerminen, 1994, Simulation of Brownian coagulation in the presence of van der Waals forces and viscous interactions, Aerosol Sci Technol, 20, 207, 10.1080/02786829408959677
Alam, 1987, The effect of van der Waals and viscous forces on aerosol coagulation, Aerosol Sci Technol, 6, 41, 10.1080/02786828708959118
Marlow, 1982, Lead aerosol brownian collision rates at normal and elevated temperature: theory, J Colloid Interface Sci, 87, 209, 10.1016/0021-9797(82)90383-6
Arunachalam, 1999, Simulations of aerosol aggregation including long-range interactions, Phys Rev E, 60, 2051, 10.1103/PhysRevE.60.2051
Fuchs, 1964
Ouyang, 2012, Nanoparticle collisions in the gas phase in the presence of singular contact potentials, J Chem Phys, 137, 064316, 10.1063/1.4742064
Blanton, 1997, Dielectric dispersion measurements of CdSe nanocrystal colloids: observation of a permanent dipole moment, Phys Rev Lett, 79, 865, 10.1103/PhysRevLett.79.865
Shim, 1999, Permanent dipole moment and charges in colloidal semiconductor quantum dots, J Chem Phys, 111, 6955, 10.1063/1.479988
Yan, 2010, Effects of dipole moment and temperature on the interaction dynamics of titania nanoparticles during agglomeration, J Phys Chem C, 114, 10755, 10.1021/jp102750k
Zhang, 2012, Role of dipole–dipole interaction on enhancing Brownian coagulation of charge-neutral nanoparticles in the free molecular regime, J Chem Phys, 134, 084501, 10.1063/1.3555633
Zhang, 2012, Effect of size-dependent grain structures on the dynamics of nanoparticle coalescence, J Appl Phys, 111, 124321, 10.1063/1.4730773
Koparde, 2005, Molecular dynamics simulation of titanium dioxide nanoparticle sintering, J Phys Chem B, 109, 24280, 10.1021/jp054667p
Iijima, 1991, Substrate and size effects on the coalescence of small particles, J Appl Phys, 70, 5138, 10.1063/1.348990
Arcidiacono, 2004, On the coalescence of gold nanoparticles, Int J Multiphase Flow, 30, 979, 10.1016/j.ijmultiphaseflow.2004.03.006
Zhu, 1996, Sintering of nano-particle powders: simulations and experiments, Mater Manuf Process, 11, 905, 10.1080/10426919608947541
Lehtinen, 2001, Effect of coalescence energy release on the temporal shape evolution of nanoparticles, Phys Rev B, 63, 205402, 10.1103/PhysRevB.63.205402
Frenkel, 1945, Viscous flow on crystalline bodies under the action of surface tension, J Phys, 9, 385
Friedlander, 1994, Linear rate law for the decay of the excess surface area of a coalescing solid particle, Phys Rev B, 49, 3622, 10.1103/PhysRevB.49.3622
Koparde, 2008, Phase transformations during sintering of titania nanoparticles, ACS Nano, 2, 1620, 10.1021/nn800092m
Naicker, 2005, Characterization of titanium dioxide nanoparticles using molecular dynamics simulations, J Phys Chem B, 109, 15243, 10.1021/jp050963q
Zhang, 2014, Structural characteristics and mechanical and thermodynamic properties of nanocrystalline TiO2, Chem Rev, 114, 9613, 10.1021/cr500072j
Ding, 1997, Grain growth enhanced by anatase-to-rutile transformation in gel-derived nanocrystalline titania powders, J Alloys Compd, 248, 143, 10.1016/S0925-8388(96)02583-2
Zhou, 2012, Microscopic view of nucleation in the anatase-to-rutile transition, J Phys Chem C, 116, 8314, 10.1021/jp301228x
Hansen, 2013, Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?, Acc Chem Res, 46, 1720, 10.1021/ar3002427
Campbell, 2013, The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity, Acc Chem Res, 46, 1712, 10.1021/ar3003514
Ostwald, 1990, Periodische Erscheinungen bei der Auflösung des Chroms in Säuren-Zweite Mitteilung, Z Phys Chem, 35, 200
Kalikmanov, 2008, Argon nucleation: bringing together theory, simulations, and experiment, J Chem Phys, 128, 124506, 10.1063/1.2888995
Li, 2011, Adhesive particulate flow: the discrete-element method and its application in energy and environmental engineering, Prog Energy Combust Sci, 37, 633, 10.1016/j.pecs.2011.02.001
Marshall, 2014
Wenning, 2001, Friction laws for elastic nanoscale contacts, Europhys Lett, 54, 693, 10.1209/epl/i2001-00371-6
Luan, 2005, The breakdown of continuum models for mechanical contacts, Nature, 435, 929, 10.1038/nature03700
Higashitani, 2001, Simulation of deformation and breakup of large aggregates in flows of viscous fluids, Chem Eng Sci, 56, 2927, 10.1016/S0009-2509(00)00477-2
Eggersdorfer, 2010, Fragmentation and restructuring of soft-agglomerates under shear, J Colloid Interface Sci, 342, 261, 10.1016/j.jcis.2009.10.062
Goudeli, 2015, Coagulation−agglomeration of fractal-like particles: structure and self-preserving size distribution, Langmuir, 31, 1320, 10.1021/la504296z
Eggersdorfer, 2013, Restructuring of aggregates and their primary particle size distribution during sintering, AIChE J, 59, 1118, 10.1002/aic.14043
Luding, 2005, A discrete model for long time sintering, J Mech Phys Solids, 53, 455, 10.1016/j.jmps.2004.07.001
Okuyama, 1990, Particle generation in a chemical vapor deposition process with seed particles, AIChE J, 36, 409, 10.1002/aic.690360310
Sun, 2013, Calculation of normal contact forces between silica nanospheres, Langmuir, 29, 7825, 10.1021/la401087j
Mädler, 2006, One-step aerosol synthesis of nanoparticle agglomerate films: simulation of film porosity and thickness, Nanotechnology, 17, 4783, 10.1088/0957-4484/17/19/001