Picosecond laser patterning for ultrathin spectrally selective solar mini-modules with transparent metal-oxide multilayer electrodes

Applied Surface Science Advances - Tập 7 - Trang 100206 - 2022
Norbert Osterthun1, Hosni Meddeb1, Nils Neugebohrn1, Oleg Sergeev1, Kai Gehrke1, Martin Vehse1, Carsten Agert1
1German Aerospace Center (DLR) Institute of Networked Energy Systems, Urban and Residential Technologies, Carl-von-Ossietzky-Str. 15, 26129, Oldenburg, Germany

Tài liệu tham khảo

Traverse, 2017, Emergence of highly transparent photovoltaics for distributed applications, Nat. Energy, 2, 849, 10.1038/s41560-017-0016-9

Loik, 2017, Wavelength-selective solar photovoltaic systems: powering greenhouses for plant growth at the food-energy-water nexus, Earth’s Futu., 5, 1044, 10.1002/2016EF000531

Thompson, 2020, Tinted semi-transparent solar panels allow concurrent production of crops and electricity on the same cropland, Adv. Energy Mater., 10, 10.1002/aenm.202001189

Kim, 2018, Bifacial color realization for a-Si: H solar cells using transparent multilayered electrodes, Sol. Energy, 159, 465, 10.1016/j.solener.2017.11.019

Kim, 2018, Semitransparent blue, green, and red organic solar cells using color filtering electrodes, Adv. Opt. Mater., 6, 10.1002/adom.201800051

Shafian, 2019, Active-material-independent color-tunable semitransparent organic solar cells, ACS Appl. Mater. Interfaces, 11, 18887, 10.1021/acsami.9b03254

Patel, 2020, 2D layer-embedded transparent photovoltaics, Nano Energy, 68, 10.1016/j.nanoen.2019.104328

Osterthun, 2021, Spectral engineering of ultrathin germanium solar cells for combined photovoltaic and photosynthesis, Opt. Express, 29, 938, 10.1364/OE.412101

Götz, 2020, Ultrathin nano-absorbers in photovoltaics: prospects and innovative applications, Coatings, 10, 218, 10.3390/coatings10030218

Meddeb, 2020, Quantum well solar cell using ultrathin germanium nanoabsorber, 1149

Steenhoff, 2015, Ultrathin resonant-cavity-enhanced solar cells with amorphous germanium absorbers, Adv. Opt. Mater., 3, 182, 10.1002/adom.201400386

Nakano, 1986, Laser patterning method for integrated type a-Si solar cell submodules, Jpn. J. Appl. Phys., 25, 1936, 10.1143/JJAP.25.1936

Park, 2020, Optimization of laser-patterning process and module design for transparent amorphous silicon thin-film module using thin OMO back electrode, Sol. Energy, 201, 75, 10.1016/j.solener.2020.02.092

P. Kubis et al., "All sub-nanosecond laser monolithic interconnection of OPV modules," Progress in Photovoltaics: research and Applications, vol. 27, no. 6, pp. 479–490, 2019, doi: 10.1002/pip.3115.

Guo, 2015, Nanowire interconnects for printed large-area semitransparent organic photovoltaic modules, Adv. Energy Mater., 5, 10.1002/aenm.201401779

Heise, 2015, Demonstration of the monolithic interconnection on CIS solar cells by picosecond laser structuring on 30 by 30 cm2 modules, Progr. Photovolt., 23, 1291, 10.1002/pip.2552

Al-Ghzaiwat, 2018, Large area radial junction silicon nanowire solar mini-modules, Sci. Rep., 8, 1651, 10.1038/s41598-018-20126-5

Crupi, 2013, Laser irradiation of ZnO: al/Ag/ZnO: al multilayers for electrical isolation in thin film photovoltaics, Nanoscale Res. Lett., 8, 1, 10.1186/1556-276X-8-392

Shui-Yang, 2015, Improvement of performance of amorphous silicon-germanium thin-film solar modules with large width P2 process technology, IEEE Trans. Electron Devices, 62, 458, 10.1109/TED.2014.2379292

Brecl, 2005, A detailed study of monolithic contacts and electrical losses in a large-area thin-film module, Prog. Photovolt. Res. Appl., 13, 297, 10.1002/pip.589