Enhanced recombination next to laser-patterned lines in CIGSe solar cells revealed by spectral and time-resolved photoluminescence

Applied Surface Science - Tập 536 - Trang 147721 - 2021
Christof Schultz1, Andreas Bartelt1, Cornelia Junghans2, Wolfgang Becker2, Rutger Schlatmann1,3, Bert Stegemann1
1University of Applied Sciences– HTW Berlin, Wilhelminenhofstr. 75a, D-12459 Berlin, Germany
2Becker & Hickl GmbH, Nunsdorfer Ring 7-9, D-12277 Berlin, Germany
3PVcomB/ Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Schwarzschildstr.3, D-12489 Berlin, Germany

Tài liệu tham khảo

Green, 2020, Solar cell efficiency tables (Version 55), Prog. Photovolt.: Res. Appl., 28, 3, 10.1002/pip.3228 Compaan, 2000, Laser scribing of polycrystalline thin films, Opt. Lasers Eng., 34, 15, 10.1016/S0143-8166(00)00061-0 Stegemann, 2019, Laser patterning of thin films, Encyclopedia Appl. Phys., 1 Schultz, 2015, Controlling the thermal impact of ns laser pulses for the preparation of the P2 interconnect by local phase transformation in CIGSe, 1 Gecys, 2016, Picosecond laser modification of CIGS active layer, J. Laser Micro Nanoeng., 11, 257, 10.2961/jlmn.2016.02.0018 Westin, 2011, Next generation interconnective laser patterning of CIGS thin film modules, Sol. Energy Mater. Sol. Cells, 95, 1062, 10.1016/j.solmat.2010.11.015 Schultz, 2016, Laser-induced local phase transformation of CIGSe for monolithic serial interconnection: analysis of the material properties, Sol. Energy Mater. Sol. Cells, 157, 636, 10.1016/j.solmat.2016.07.013 Schultz, 2017, Revealing and identifying laser-induced damages in CIGSe solar cells by photoluminescence spectroscopy, IEEE J. Photovolt., 7, 1442, 10.1109/JPHOTOV.2017.2729888 Schultz, 2018, P2 nanosecond laser patterning of CIGSe solar cell absorber layers: revealing enhanced charge carrier recombination within laser-affected zones by time-resolved photoluminescence spectroscopy, 4 Hermann, 2006, Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers, J. Phys. D Appl. Phys., 39, 453, 10.1088/0022-3727/39/3/005 Stegemann, 2014, Picosecond and nanosecond laser structuring of CIGSe solar cells, 319 Schultz, 2020, Ablation mechanisms of nanosecond and picosecond laser scribing for metal halide perovskite module interconnection – an experimental and numerical analysis, Sol. Energy, 198, 410, 10.1016/j.solener.2020.01.074 Maiberg, 2015, Theoretical study of time-resolved luminescence in semiconductors. III. Trap states in the band gap, J. Appl. Phys., 118, 10.1063/1.4929877 Maiberg, 2017, Theoretical study of time-resolved luminescence in semiconductors. IV. Lateral inhomogeneities, J. Appl. Phys., 121, 10.1063/1.4976102 Maiberg, 2014, Theoretical study of time-resolved luminescence in semiconductors. I. Decay from the steady state, J. Appl. Phys., 116 Maiberg, 2014, Theoretical study of time-resolved luminescence in semiconductors. II. Pulsed excitation, J. Appl. Phys., 116 Baek, 2015, Carrier lifetimes in thin-film photovoltaics, J. Korean Phys. Soc., 67, 1064, 10.3938/jkps.67.1064 Redinger, 2017, Time resolved photoluminescence on Cu(In, Ga)Se2 absorbers: distinguishing degradation and trap states, Appl. Phys. Lett., 110, 10.1063/1.4977707 Hebert, 2009, Photoluminescence and photoluminescence excitation spectroscopy of Cu(In, Ga)Se2 thin films, Mater. Res. Soc. Symp. Proce., 1195, 1165 Siebentritt, 2010, The electronic structure of chalcopyrites-bands, point defects and grain boundaries, Prog. Photovolt. Res. Appl., 18, 390, 10.1002/pip.936 Abou-Ras, 2011 Rau, 2012, Baseline meets innovation technology transfer for high efficiency thin-flim Si and CIGS modules at PVcomB, Photovolt. Int., 17 Schmidt, 2017, Adjusting the Ga grading during fast atmospheric processing of Cu(In, Ga)Se2 solar cell absorber layers using elemental selenium vapor, Prog. Photovolt. Res. Appl., 1 Liu, 1982, Simple technique for measurements of pulsed Gaussian-beam spot sizes, Opt. Lett., 7, 196, 10.1364/OL.7.000196 Stegemann, 2015, Electrical and structural functionality of CIGSe solar cells patterned with picosecond laser pulses of different wavelengths, 1 S. Bahl, Numerical simulation and experimental investigations for mechanical scribing of Cu(In;Ga)Se2 thin-film solar cells, in, Martin Luther University Halle-Wittenberg, 2016, pp. 145. Fairand, 1979, Laser generated stress waves: Their characteristics and their effects to materials, Am. Inst. Phys. Conf. Proc., 50, 27 Dagan, 1990, Defect level identification in copper indium selenide (CuInSe2) from photoluminescence studies, Chem. Mater., 2, 286, 10.1021/cm00009a019 Matsushita, 1995, Electrical and optical properties of cuinse2 single crystals prepared by three-temperature-horizontal Bridgman method, Jpn. J. Appl. Phys., 34, 3474, 10.1143/JJAP.34.3474 Schön, 1997, Sharp optical emissions from Cu-rich, polycrystalline CuInSe2 thin films, J. Appl. Phys., 81, 2799, 10.1063/1.364306 Rincon, 1996, Analysis of the donor-acceptor recombination band in the photoluminescence spectra of CuInSe2, Mater. Lett., 29, 87, 10.1016/S0167-577X(96)00133-4 Shen, 1996, Photoluminescence studies of CuInSe2, Infrared Phys. Technol., 37, 509, 10.1016/1350-4495(95)00124-7 Zott, 1997, Radiative recombination in CuInSe2 thin films, J. Appl. Phys., 82, 356, 10.1063/1.366546 Somphong, 1998, Photoluminescence of a high quality CuInSe2 single crystal, Jpn. J. Appl. Phys., 37, L269, 10.1143/JJAP.37.L269 Shibata, 1998, Negative thermal quenching curves in photoluminescence of solids, Jpn. J. Appl. Phys., 37, 550, 10.1143/JJAP.37.550 Kimura, 2001, Photoluminescence properties of sodium incorporation in CuInSe2 and CuIn3Se5 thin films, Sol. Energy Mater. Sol. Cells, 67, 289, 10.1016/S0927-0248(00)00294-4 Fiechter, 2000, Homogeneity ranges, defect phases and defect formation energies in AIBIIICVI2 Chalcopyrites (A= Cu; B= Ga, In; C= S, Se), Jpn. J. Appl. Phys., 39, 123, 10.7567/JJAPS.39S1.123 Rincon, 1986, Optical properties and characterization of CuInSe2, Sol. Cells, 16, 335, 10.1016/0379-6787(86)90093-1 Malitckaya, 2017, First-principles modeling of point defects and complexes in thin-film solar-cell absorber CuInSe2, Adv. Electron. Mater., 3, 10.1002/aelm.201600353 Pohl, 2013, Intrinsic point defects in CuInSe2 and CuGaSe2 as seen via screened-exchange hybrid density functional theory, Phys. Rev. B, 87, 10.1103/PhysRevB.87.245203 Metzger, 2008, Long lifetimes in high-efficiency Cu(In, Ga)Se2 solar cells, Appl. Phys. Lett., 93, 10.1063/1.2957983 Shirakata, 2014, Photoluminescence characterization of surface degradation mechanism in Cu(In, Ga)Se2 thin films grown on Mo/soda lime glass substrate, Jpn. J. Appl. Phys., 53, 05FW11, 10.7567/JJAP.53.05FW11 Rung, 2014, Characterization of laser beam shaping optics based on their ablation geometry of thin films, Micromachines, 5, 943, 10.3390/mi5040943