The Development of Transparent Photovoltaics
Tài liệu tham khảo
Heinstein, 2013, Building integrated photovoltaics (BIPV): review, potentials, barriers and myths, Green, 3, 125, 10.1515/green-2013-0020
Della Gaspera, 2015, Ultra-thin high efficiency semitransparent perovskite solar cells, Nano Energy, 13, 249, 10.1016/j.nanoen.2015.02.028
Lee, 2020, Neutral-Colored Transparent Crystalline Silicon Photovoltaics, Joule, 4, 235, 10.1016/j.joule.2019.11.008
Zhao, 2014, Near-infrared harvesting transparent luminescent solar concentrators, Adv. Opt. Mater., 2, 606, 10.1002/adom.201400103
Xue, 2017, Dual interfacial modifications enable high performance semitransparent perovskite solar cells with large open circuit voltage and fill factor, Adv. Energy Mater., 7, 1602333, 10.1002/aenm.201602333
Yang, 2020, High-Performance Near-Infrared Harvesting Transparent Luminescent Solar Concentrators, Adv. Opt. Mater., 8, 1901536, 10.1002/adom.201901536
Green, 2019, Solar cell efficiency tables (version 55), Prog. Photovolt. Res. Appl.
Colonna, 2012, Efficient cosensitization strategy for dye-sensitized solar cells, Appl. Phys. Express, 5, 022303, 10.1143/APEX.5.022303
Saifullah, 2016, Comprehensive review on material requirements, present status, and future prospects for building-integrated semitransparent photovoltaics (BISTPV), J. Mater. Chem. A Mater. Energy Sustain., 4, 8512, 10.1039/C6TA01016D
Wen, 2014, Theoretical design of multi-colored semi-transparent organic solar cells with both efficient color filtering and light harvesting, Sci. Rep., 4, 7036, 10.1038/srep07036
Liu, 2015, Neutral-color semitransparent organic solar cells with all-graphene electrodes, ACS Nano, 9, 12026, 10.1021/acsnano.5b04858
Xue, 2018, Recent advances in semi-transparent polymer and perovskite solar cells for power generating window applications, Energy Environ. Sci., 11, 1688, 10.1039/C8EE00154E
Xiong, 2011, PV module durability testing under high voltage biased damp heat conditions, Energy Procedia, 8, 384, 10.1016/j.egypro.2011.06.154
Burlingame, 2019, Intrinsically stable organic solar cells under high-intensity illumination, Nature, 573, 394, 10.1038/s41586-019-1544-1
Traverse, 2018, Lifetime of organic salt photovoltaics, Adv. Energy Mater., 8, 1703678, 10.1002/aenm.201703678
Jørgensen, 2012, Stability of polymer solar cells, Adv. Mater., 24, 580, 10.1002/adma.201104187
Mozaffari, 2017, An overview of the Challenges in the commercialization of dye sensitized solar cells, Renew. Sustain. Energy Rev., 71, 675, 10.1016/j.rser.2016.12.096
Wang, 2019, A review of perovskites solar cell stability, Adv. Funct. Mater., 29, 1808843, 10.1002/adfm.201808843
Louwen, 2016, A cost roadmap for silicon heterojunction solar cells, Sol. Energy Mater. Sol. Cells, 147, 295, 10.1016/j.solmat.2015.12.026
Chang, 2017, A manufacturing cost estimation method with uncertainty analysis and its application to perovskite on glass photovoltaic modules, Prog. Photovolt. Res. Appl., 25, 390, 10.1002/pip.2871
Kalowekamo, 2009, Estimating the manufacturing cost of purely organic solar cells, Sol. Energy, 83, 1224, 10.1016/j.solener.2009.02.003
Kirchartz, 2019, High open-circuit voltages in lead-halide perovskite solar cells: experiment, theory and open questions, Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 377, 20180286
Beiley, 2013, Semi-transparent polymer solar cells with excellent sub-bandgap transmission for third generation photovoltaics, Adv. Mater., 25, 7020, 10.1002/adma.201301985
Selvaraj, 2018, Enhancing the efficiency of transparent dye-sensitized solar cells using concentrated light, Sol. Energy Mater. Sol. Cells, 175, 29, 10.1016/j.solmat.2017.10.006
Shin, 2019, Semi-transparent photovoltaics using ultra-thin Cu (In, Ga) Se2 absorber layers prepared by single-stage co-evaporation, Sol. Energy, 181, 276, 10.1016/j.solener.2019.02.003
Yang, 2018, Flexible semi-transparent a-Si: H pin solar cells for functional energy-harvesting applications, Mater. Sci. Eng. B, 229, 1, 10.1016/j.mseb.2017.12.005
Alrashidi, 2020, Thermal performance of semitransparent CdTe BIPV window at temperate climate, Sol. Energy, 195, 536, 10.1016/j.solener.2019.11.084
Zhang, 2017, Highly efficient, transparent and stable semitransparent colloidal quantum dot solar cells: a combined numerical modeling and experimental approach, Energy Environ. Sci., 10, 216, 10.1039/C6EE02824A
Heo, 2015, Stable semi-transparent CH 3 NH 3 PbI 3 planar sandwich solar cells, Energy Environ. Sci., 8, 2922, 10.1039/C5EE01050K
Habibi, 2016, Progress in emerging solution-processed thin film solar cells–Part II: Perovskite solar cells, Renew. Sustain. Energy Rev., 62, 1012, 10.1016/j.rser.2016.05.042
Lim, 2017, Colored a-Si: H transparent solar cells employing ultrathin transparent multi-layered electrodes, Sol. Energy Mater. Sol. Cells, 163, 164, 10.1016/j.solmat.2017.01.017
Lim, 2014, Highly transparent amorphous silicon solar cells fabricated using thin absorber and high-bandgap-energy n/i-interface layers, Sol. Energy Mater. Sol. Cells, 128, 301, 10.1016/j.solmat.2014.05.041
Myong, 2015, Design of esthetic color for thin-film silicon semi-transparent photovoltaic modules, Sol. Energy Mater. Sol. Cells, 143, 442, 10.1016/j.solmat.2015.07.042
Choi, 2019, P/i interfacial engineering in semi-transparent silicon thin film solar cells for fabrication at a low temperature of 150° C, Curr. Appl. Phys., 19, 1120, 10.1016/j.cap.2019.07.006
Saifullah, 2016, Development of semitransparent CIGS thin-film solar cells modified with a sulfurized-AgGa layer for building applications, J. Mater. Chem. A Mater. Energy Sustain., 4, 10542, 10.1039/C6TA01909A
Mutalikdesai, 2017, Solution process for fabrication of thin film CdS/CdTe photovoltaic cell for building integration, Thin Solid Films, 632, 73, 10.1016/j.tsf.2017.04.036
Tavakoli Dastjerdi, 2020, Cost-Effective and Semi-Transparent PbS Quantum Dot Solar Cells Using Copper Electrodes, ACS Appl. Mater. Interfaces, 12, 818, 10.1021/acsami.9b18487
Yin, 2017, Long lifetime stable and efficient semitransparent organic solar cells using a ZnMgO-modified cathode combined with a thin MoO 3/Ag anode, J. Mater. Chem. A Mater. Energy Sustain., 5, 3888, 10.1039/C6TA10981K
Wong, 2017, Efficient semitransparent organic solar cells with good color perception and good color rendering by blade coating, Org. Electron., 43, 196, 10.1016/j.orgel.2017.01.003
Zhang, 2016, Colorful semitransparent polymer solar cells employing a bottom periodic one-dimensional photonic crystal and a top conductive PEDOT: PSS layer, J. Mater. Chem. A Mater. Energy Sustain., 4, 11821, 10.1039/C6TA05249E
Song, 2016, Visibly-transparent organic solar cells on flexible substrates with all-graphene electrodes, Adv. Energy Mater., 6, 1600847, 10.1002/aenm.201600847
Min, 2016, Fully Solution-Processed Small Molecule Semitransparent Solar Cells: Optimization of Transparent Cathode Architecture and Four Absorbing Layers, Adv. Funct. Mater., 26, 4543, 10.1002/adfm.201505411
Xu, 2017, High-performance colorful semitransparent polymer solar cells with ultrathin hybrid-metal electrodes and fine-tuned dielectric mirrors, Adv. Funct. Mater., 27, 1605908, 10.1002/adfm.201605908
Upama, 2017, High performance semitransparent organic solar cells with 5% PCE using non-patterned MoO3/Ag/MoO3 anode, Curr. Appl. Phys., 17, 298, 10.1016/j.cap.2016.12.010
Hu, 2019, Semitransparent ternary nonfullerene polymer solar cells exhibiting 9.40% efficiency and 24.6% average visible transmittance, Nano Energy, 55, 424, 10.1016/j.nanoen.2018.11.010
Li, 2019, Semitransparent fullerene-free polymer solar cell with 44% AVT and 7% efficiency based on a new chlorinated small molecule acceptor, Dyes Pigments, 166, 196, 10.1016/j.dyepig.2019.03.024
Sun, 2019, Highly-efficient semi-transparent organic solar cells utilising non-fullerene acceptors with optimised multilayer MoO3/Ag/MoO3 electrodes, Mater. Chem. Front., 3, 450, 10.1039/C8QM00610E
López-López, 2014, Panchromatic porous specular back reflectors for efficient transparent dye solar cells, Phys. Chem. Chem. Phys., 16, 663, 10.1039/C3CP53939C
Passoni, 2017, Multi-layered hierarchical nanostructures for transparent monolithic dye-sensitized solar cell architectures, Nanotechnology, 28, 245603, 10.1088/1361-6528/aa6f4b
Li, 2017, Nanotube enhanced carbon grids as top electrodes for fully printable mesoscopic semitransparent perovskite solar cells, J. Mater. Chem. A Mater. Energy Sustain., 5, 10374, 10.1039/C7TA01383C
Kwon, 2016, Parallelized nanopillar perovskites for semitransparent solar cells using an anodized aluminum oxide scaffold, Adv. Energy Mater., 6, 1601055, 10.1002/aenm.201601055
Bag, 2016, Efficient semi-transparent planar perovskite solar cells using a ‘molecular glue’, Nano Energy, 30, 542, 10.1016/j.nanoen.2016.10.044
Kim, 2016, Empowering semi-transparent solar cells with thermal-mirror functionality, Adv. Energy Mater., 6, 1502466, 10.1002/aenm.201502466
Lee, 2019, Thin metal top electrode and interface engineering for efficient and air-stable semitransparent perovskite solar cells, J. Alloys Compd., 797, 65, 10.1016/j.jallcom.2019.05.051
Islam, 2019, Highly stable semi-transparent MAPbI3 perovskite solar cells with operational output for 4000 h, Sol. Energy Mater. Sol. Cells, 195, 323, 10.1016/j.solmat.2019.03.004
Xiao, 2016, Hierarchical Dual-Scaffolds Enhance Charge Separation and Collection for High Efficiency Semitransparent Perovskite Solar Cells, Adv. Mater. Interfaces, 3, 1600484, 10.1002/admi.201600484
Yang, 2019, How to accurately report transparent solar cells, Joule, 3, 1803, 10.1016/j.joule.2019.06.005
Rowell, 2011, Transparent electrode requirements for thin film solar cell modules, Energy Environ. Sci., 4, 131, 10.1039/C0EE00373E
Hunger, 2015, Transparent Metal Network with Low Haze and High Figure of Merit applied to Front and Back Electrodes in Semitransparent ITO-free Polymer Solar Cells, Energy Technol. (Weinheim), 3, 638, 10.1002/ente.201500014
Fang, 2018, High-Performance Hazy Silver Nanowire Transparent Electrodes through Diameter Tailoring for Semitransparent Photovoltaics, Adv. Funct. Mater., 28, 1705409, 10.1002/adfm.201705409
Bryant, 2014, A transparent conductive adhesive laminate electrode for high-efficiency organic-inorganic lead halide perovskite solar cells, Adv. Mater., 26, 7499, 10.1002/adma.201403939
Sohn, 2019, Silver nanowire networks: Mechano-electric properties and applications, Materials (Basel), 12, 2526, 10.3390/ma12162526
Bolotin, 2008, Ultrahigh electron mobility in suspended graphene, Solid State Commun., 146, 351, 10.1016/j.ssc.2008.02.024
Serway, 1998
Hu, 2010, Scalable coating and properties of transparent, flexible, silver nanowire electrodes, ACS Nano, 4, 2955, 10.1021/nn1005232
Um, 2015, Microgrid electrode for Si microwire solar cells with a fill factor of over 80%, Adv. Mater. Interfaces, 2, 1500347, 10.1002/admi.201500347
Peng, 2011, Building-integrated photovoltaics (BIPV) in architectural design in China, Energy Build., 43, 3592, 10.1016/j.enbuild.2011.09.032
Yoon, 2008, Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs, Nat. Mater., 7, 907, 10.1038/nmat2287
Yano, 2014, Prototype semi-transparent photovoltaic modules for greenhouse roof applications, Biosyst. Eng., 122, 62, 10.1016/j.biosystemseng.2014.04.003
Takeoka, 1993, Development and application of see-through a-Si solar cells, Sol. Energy Mater. Sol. Cells, 29, 243, 10.1016/0927-0248(93)90039-6
Fath, 2002, Industrial manufacturing of semitransparent crystalline silicon POWER solar cells, Sol. Energy Mater. Sol. Cells, 74, 127, 10.1016/S0927-0248(02)00056-9
Ordy, 1964, Visual Acuity in Newborn Primate Infants, Proc. Soc. Exp. Biol. Med., 115, 677, 10.3181/00379727-115-29004
Pastorelli, 2015, Enhanced light harvesting in semitransparent organic solar cells using an optical metal cavity configuration, Adv. Energy Mater., 5, 1400614, 10.1002/aenm.201400614
Yu, 2015, Highly efficient semitransparent polymer solar cells with color rendering index approaching 100 using one-dimensional photonic crystal, ACS Appl. Mater. Interfaces, 7, 9920, 10.1021/acsami.5b02039
Chen, 2013, High-performance semi-transparent polymer solar cells possessing tandem structures, Energy Environ. Sci., 6, 2714, 10.1039/c3ee40860d
Wang, 2017, Fused hexacyclic nonfullerene acceptor with strong near-infrared absorption for semitransparent organic solar cells with 9.77% efficiency, Adv. Mater., 29, 1701308, 10.1002/adma.201701308
Meiss, 2011, Highly efficient semitransparent tandem organic solar cells with complementary absorber materials, Appl. Phys. Lett., 99, 143, 10.1063/1.3610551
Zhang, 2014, High-Performance, Transparent, Dye-Sensitized Solar Cells for See-Through Photovoltaic Windows, Adv. Energy Mater., 4, 1301966, 10.1002/aenm.201301966
Lin, 2012, Highly efficient bifacial transparent organic solar cells with power conversion efficiency greater than 3% and transparency of 50%, Org. Electron., 13, 1722, 10.1016/j.orgel.2012.05.029
Meiss, 2011, Near-infrared absorbing semitransparent organic solar cells, Appl. Phys. Lett., 99, 252, 10.1063/1.3660708
Xiao, 2015, Inverted, semitransparent small molecule photovoltaic cells, Appl. Phys. Lett., 107, 033901, 10.1063/1.4927142
Véron, 2014, NIR-absorbing heptamethine dyes with tailor-made counterions for application in light to energy conversion, Org. Lett., 16, 1044, 10.1021/ol4034385
Liu, 2017, Efficient semitransparent solar cells with high NIR responsiveness enabled by a small-bandgap electron acceptor, Adv. Mater., 29, 1606574, 10.1002/adma.201606574
Zhang, 2013, Semitransparent organic photovoltaics using a near-infrared absorbing cyanine dye, Sol. Energy Mater. Sol. Cells, 118, 157, 10.1016/j.solmat.2013.08.011
Chen, 2012, Visibly transparent polymer solar cells produced by solution processing, ACS Nano, 6, 7185, 10.1021/nn3029327
Yang, 2017, Limits of visibly transparent luminescent solar concentrators, Adv. Opt. Mater., 5, 1600851, 10.1002/adom.201600851
Kim, 2018, Phosphorescent Energy Downshifting for Diminishing Surface Recombination in Silicon Nanowire Solar Cells, Sci. Rep., 8, 16974, 10.1038/s41598-018-35356-w
van Sark, 2008, Luminescent Solar Concentrators--a review of recent results, Opt. Express, 16, 21773, 10.1364/OE.16.021773
Meinardi, 2017, Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots, Nat. Photonics, 11, 177, 10.1038/nphoton.2017.5
Coropceanu, 2014, Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency, Nano Lett., 14, 4097, 10.1021/nl501627e
Traverse, 2017, Emergence of highly transparent photovoltaics for distributed applications, Nat. Energy, 2, 849, 10.1038/s41560-017-0016-9
Sutherland, 2018, Cost competitive luminescent solar concentrators, Joule, 2, 203, 10.1016/j.joule.2018.02.004
Meinardi, 2017, Luminescent solar concentrators for building-integrated photovoltaics, Nat. Rev. Mater., 2, 1, 10.1038/natrevmats.2017.72
Zhao, 2013, Transparent Luminescent Solar Concentrators for Large-Area Solar Windows Enabled by Massive Stokes-Shift Nanocluster Phosphors, Adv. Energy Mater., 3, 1143, 10.1002/aenm.201300173
Yang, 2019, Integration of near-infrared harvesting transparent luminescent solar concentrators onto arbitrary surfaces, J. Lumin., 210, 239, 10.1016/j.jlumin.2019.02.042
Banal, 2015, A Transparent Planar Concentrator Using Aggregates of gem-Pyrene Ethenes, Adv. Energy Mater., 5, 1500818, 10.1002/aenm.201500818
Wang, 2011, Luminescent solar concentrator employing rare earth complex with zero self-absorption loss, Sol. Energy, 85, 2571, 10.1016/j.solener.2011.07.014
Erickson, 2014, Zero-reabsorption doped-nanocrystal luminescent solar concentrators, ACS Nano, 8, 3461, 10.1021/nn406360w
Zhao, 2016, Absorption Enhancement in “Giant” Core/Alloyed-Shell Quantum Dots for Luminescent Solar Concentrator, Small, 12, 5354, 10.1002/smll.201600945
Bradshaw, 2015, Nanocrystals for luminescent solar concentrators, Nano Lett., 15, 1315, 10.1021/nl504510t
Zhou, 2016, Near infrared, highly efficient luminescent solar concentrators, Adv. Energy Mater., 6, 1501913, 10.1002/aenm.201501913
Sanguineti, 2012, NIR emitting ytterbium chelates for colourless luminescent solar concentrators, Phys. Chem. Chem. Phys., 14, 6452, 10.1039/c2cp40791d
Berends, 2016, Radiative and nonradiative recombination in CuInS2 nanocrystals and CuInS2-based core/shell nanocrystals, J. Phys. Chem. Lett., 7, 3503, 10.1021/acs.jpclett.6b01668
Li, 2015, Large Stokes shift and high efficiency luminescent solar concentrator incorporated with CuInS 2/ZnS quantum dots, Sci. Rep., 5, 17777, 10.1038/srep17777
Mateker, 2015, Minimal long-term intrinsic degradation observed in a polymer solar cell illuminated in an oxygen-free environment, Chem. Mater., 27, 404, 10.1021/cm504650a
Campbell, 1986, The limiting efficiency of silicon solar cells under concentrated sunlight, IEEE Trans. Electron Dev., 33, 234, 10.1109/T-ED.1986.22472
Yang, 2019, How to Accurately Report Transparent Luminescent Solar Concentrators, Joule, 3, 2871, 10.1016/j.joule.2019.10.009
Yaghoubi, 2015, Large photocurrent response and external quantum efficiency in biophotoelectrochemical cells incorporating reaction center plus light harvesting complexes, Biomacromolecules, 16, 1112, 10.1021/bm501772x
Tai, 2017, Emerging semitransparent solar cells: materials and device design, Adv. Mater., 29, 1700192, 10.1002/adma.201700192
Zimmermann, 2014, Erroneous efficiency reports harm organic solar cell research, Nat. Photonics, 8, 669, 10.1038/nphoton.2014.210
Hwang, 2017, Enhancement of light absorption in photovoltaic devices using textured polydimethylsiloxane stickers, ACS Appl. Mater. Interfaces, 9, 21276, 10.1021/acsami.7b04525
Tang, 2015, Profiles of phenolics, carotenoids and antioxidative capacities of thermal processed white, yellow, orange and purple sweet potatoes grown in Guilin, China, Food Sci. Hum. Wellness, 4, 123, 10.1016/j.fshw.2015.07.003
Leon, 2006, Color measurement in L∗ a∗ b∗ units from RGB digital images, Food Res. Int., 39, 1084, 10.1016/j.foodres.2006.03.006
Yang, 2019
Yoshikawa, 2017, Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nat. Energy, 2, 17032, 10.1038/nenergy.2017.32
Kurinec, 2018
Pern, 1997, Ethylene-vinyl acetate (EVA) encapsulants for photovoltaic modules: Degradation and discoloration mechanisms and formulation modifications for improved photostability, Die Angewandte Makromolekulare Chemie: Applied Macromolecular Chemistry and Physics, 252, 195, 10.1002/apmc.1997.052520114
Arndt, 2010
Roesch, 2015, Procedures and Practices for Evaluating Thin-Film Solar Cell Stability, Adv. Energy Mater., 5, 1501407, 10.1002/aenm.201501407
Madsen, 2011, Oxygen-and water-induced degradation of an inverted polymer solar cell: the barrier effect, Journal of Photonics for Energy, 1, 011104, 10.1117/1.3544010
Neugebauer, 2000, Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells, Sol. Energy Mater. Sol. Cells, 61, 35, 10.1016/S0927-0248(99)00094-X
Niu, 2015, Review of recent progress in chemical stability of perovskite solar cells, J. Mater. Chem. A Mater. Energy Sustain., 3, 8970, 10.1039/C4TA04994B
Kang, 2016, Bulk-heterojunction organic solar cells: five core technologies for their commercialization, Adv. Mater., 28, 7821, 10.1002/adma.201601197
Dong, 2016, Encapsulation of perovskite solar cells for high humidity conditions, ChemSusChem, 9, 2597, 10.1002/cssc.201600868
Shi, 2017, Accelerated lifetime testing of organic–inorganic perovskite solar cells encapsulated by polyisobutylene, ACS Appl. Mater. Interfaces, 9, 25073, 10.1021/acsami.7b07625
Choi, 2018, Enhancing stability for organic-inorganic perovskite solar cells by atomic layer deposited Al2O3 encapsulation, Sol. Energy Mater. Sol. Cells, 188, 37, 10.1016/j.solmat.2018.08.016
Taira, 2010, Silicon cells: catching rays, Nat. Photonics, 4, 602, 10.1038/nphoton.2010.193
Olivieri, 2014, Energy saving potential of semi-transparent photovoltaic elements for building integration, Energy, 76, 572, 10.1016/j.energy.2014.08.054
Horak, 2017, Cabin air temperature of parked vehicles in summer conditions: life-threatening environment for children and pets calculated by a dynamic model, Theor. Appl. Climatol., 130, 107, 10.1007/s00704-016-1861-3
Dadour, 2011, Temperature variations in a parked vehicle, Forensic Sci. Int., 207, 205, 10.1016/j.forsciint.2010.10.009