The Development of Transparent Photovoltaics

Cell Reports Physical Science - Tập 1 - Trang 100143 - 2020
Kangmin Lee1, Han-Don Um1, Deokjae Choi1, Jeonghwan Park1, Namwoo Kim1, Hyungwoo Kim1, Kwanyong Seo1
1Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea

Tài liệu tham khảo

Heinstein, 2013, Building integrated photovoltaics (BIPV): review, potentials, barriers and myths, Green, 3, 125, 10.1515/green-2013-0020 Della Gaspera, 2015, Ultra-thin high efficiency semitransparent perovskite solar cells, Nano Energy, 13, 249, 10.1016/j.nanoen.2015.02.028 Lee, 2020, Neutral-Colored Transparent Crystalline Silicon Photovoltaics, Joule, 4, 235, 10.1016/j.joule.2019.11.008 Zhao, 2014, Near-infrared harvesting transparent luminescent solar concentrators, Adv. Opt. Mater., 2, 606, 10.1002/adom.201400103 Xue, 2017, Dual interfacial modifications enable high performance semitransparent perovskite solar cells with large open circuit voltage and fill factor, Adv. Energy Mater., 7, 1602333, 10.1002/aenm.201602333 Yang, 2020, High-Performance Near-Infrared Harvesting Transparent Luminescent Solar Concentrators, Adv. Opt. Mater., 8, 1901536, 10.1002/adom.201901536 Green, 2019, Solar cell efficiency tables (version 55), Prog. Photovolt. Res. Appl. Colonna, 2012, Efficient cosensitization strategy for dye-sensitized solar cells, Appl. Phys. Express, 5, 022303, 10.1143/APEX.5.022303 Saifullah, 2016, Comprehensive review on material requirements, present status, and future prospects for building-integrated semitransparent photovoltaics (BISTPV), J. Mater. Chem. A Mater. Energy Sustain., 4, 8512, 10.1039/C6TA01016D Wen, 2014, Theoretical design of multi-colored semi-transparent organic solar cells with both efficient color filtering and light harvesting, Sci. Rep., 4, 7036, 10.1038/srep07036 Liu, 2015, Neutral-color semitransparent organic solar cells with all-graphene electrodes, ACS Nano, 9, 12026, 10.1021/acsnano.5b04858 Xue, 2018, Recent advances in semi-transparent polymer and perovskite solar cells for power generating window applications, Energy Environ. Sci., 11, 1688, 10.1039/C8EE00154E Xiong, 2011, PV module durability testing under high voltage biased damp heat conditions, Energy Procedia, 8, 384, 10.1016/j.egypro.2011.06.154 Burlingame, 2019, Intrinsically stable organic solar cells under high-intensity illumination, Nature, 573, 394, 10.1038/s41586-019-1544-1 Traverse, 2018, Lifetime of organic salt photovoltaics, Adv. Energy Mater., 8, 1703678, 10.1002/aenm.201703678 Jørgensen, 2012, Stability of polymer solar cells, Adv. Mater., 24, 580, 10.1002/adma.201104187 Mozaffari, 2017, An overview of the Challenges in the commercialization of dye sensitized solar cells, Renew. Sustain. Energy Rev., 71, 675, 10.1016/j.rser.2016.12.096 Wang, 2019, A review of perovskites solar cell stability, Adv. Funct. Mater., 29, 1808843, 10.1002/adfm.201808843 Louwen, 2016, A cost roadmap for silicon heterojunction solar cells, Sol. Energy Mater. Sol. Cells, 147, 295, 10.1016/j.solmat.2015.12.026 Chang, 2017, A manufacturing cost estimation method with uncertainty analysis and its application to perovskite on glass photovoltaic modules, Prog. Photovolt. Res. Appl., 25, 390, 10.1002/pip.2871 Kalowekamo, 2009, Estimating the manufacturing cost of purely organic solar cells, Sol. Energy, 83, 1224, 10.1016/j.solener.2009.02.003 Kirchartz, 2019, High open-circuit voltages in lead-halide perovskite solar cells: experiment, theory and open questions, Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 377, 20180286 Beiley, 2013, Semi-transparent polymer solar cells with excellent sub-bandgap transmission for third generation photovoltaics, Adv. Mater., 25, 7020, 10.1002/adma.201301985 Selvaraj, 2018, Enhancing the efficiency of transparent dye-sensitized solar cells using concentrated light, Sol. Energy Mater. Sol. Cells, 175, 29, 10.1016/j.solmat.2017.10.006 Shin, 2019, Semi-transparent photovoltaics using ultra-thin Cu (In, Ga) Se2 absorber layers prepared by single-stage co-evaporation, Sol. Energy, 181, 276, 10.1016/j.solener.2019.02.003 Yang, 2018, Flexible semi-transparent a-Si: H pin solar cells for functional energy-harvesting applications, Mater. Sci. Eng. B, 229, 1, 10.1016/j.mseb.2017.12.005 Alrashidi, 2020, Thermal performance of semitransparent CdTe BIPV window at temperate climate, Sol. Energy, 195, 536, 10.1016/j.solener.2019.11.084 Zhang, 2017, Highly efficient, transparent and stable semitransparent colloidal quantum dot solar cells: a combined numerical modeling and experimental approach, Energy Environ. Sci., 10, 216, 10.1039/C6EE02824A Heo, 2015, Stable semi-transparent CH 3 NH 3 PbI 3 planar sandwich solar cells, Energy Environ. Sci., 8, 2922, 10.1039/C5EE01050K Habibi, 2016, Progress in emerging solution-processed thin film solar cells–Part II: Perovskite solar cells, Renew. Sustain. Energy Rev., 62, 1012, 10.1016/j.rser.2016.05.042 Lim, 2017, Colored a-Si: H transparent solar cells employing ultrathin transparent multi-layered electrodes, Sol. Energy Mater. Sol. Cells, 163, 164, 10.1016/j.solmat.2017.01.017 Lim, 2014, Highly transparent amorphous silicon solar cells fabricated using thin absorber and high-bandgap-energy n/i-interface layers, Sol. Energy Mater. Sol. Cells, 128, 301, 10.1016/j.solmat.2014.05.041 Myong, 2015, Design of esthetic color for thin-film silicon semi-transparent photovoltaic modules, Sol. Energy Mater. Sol. Cells, 143, 442, 10.1016/j.solmat.2015.07.042 Choi, 2019, P/i interfacial engineering in semi-transparent silicon thin film solar cells for fabrication at a low temperature of 150° C, Curr. Appl. Phys., 19, 1120, 10.1016/j.cap.2019.07.006 Saifullah, 2016, Development of semitransparent CIGS thin-film solar cells modified with a sulfurized-AgGa layer for building applications, J. Mater. Chem. A Mater. Energy Sustain., 4, 10542, 10.1039/C6TA01909A Mutalikdesai, 2017, Solution process for fabrication of thin film CdS/CdTe photovoltaic cell for building integration, Thin Solid Films, 632, 73, 10.1016/j.tsf.2017.04.036 Tavakoli Dastjerdi, 2020, Cost-Effective and Semi-Transparent PbS Quantum Dot Solar Cells Using Copper Electrodes, ACS Appl. Mater. Interfaces, 12, 818, 10.1021/acsami.9b18487 Yin, 2017, Long lifetime stable and efficient semitransparent organic solar cells using a ZnMgO-modified cathode combined with a thin MoO 3/Ag anode, J. Mater. Chem. A Mater. Energy Sustain., 5, 3888, 10.1039/C6TA10981K Wong, 2017, Efficient semitransparent organic solar cells with good color perception and good color rendering by blade coating, Org. Electron., 43, 196, 10.1016/j.orgel.2017.01.003 Zhang, 2016, Colorful semitransparent polymer solar cells employing a bottom periodic one-dimensional photonic crystal and a top conductive PEDOT: PSS layer, J. Mater. Chem. A Mater. Energy Sustain., 4, 11821, 10.1039/C6TA05249E Song, 2016, Visibly-transparent organic solar cells on flexible substrates with all-graphene electrodes, Adv. Energy Mater., 6, 1600847, 10.1002/aenm.201600847 Min, 2016, Fully Solution-Processed Small Molecule Semitransparent Solar Cells: Optimization of Transparent Cathode Architecture and Four Absorbing Layers, Adv. Funct. Mater., 26, 4543, 10.1002/adfm.201505411 Xu, 2017, High-performance colorful semitransparent polymer solar cells with ultrathin hybrid-metal electrodes and fine-tuned dielectric mirrors, Adv. Funct. Mater., 27, 1605908, 10.1002/adfm.201605908 Upama, 2017, High performance semitransparent organic solar cells with 5% PCE using non-patterned MoO3/Ag/MoO3 anode, Curr. Appl. Phys., 17, 298, 10.1016/j.cap.2016.12.010 Hu, 2019, Semitransparent ternary nonfullerene polymer solar cells exhibiting 9.40% efficiency and 24.6% average visible transmittance, Nano Energy, 55, 424, 10.1016/j.nanoen.2018.11.010 Li, 2019, Semitransparent fullerene-free polymer solar cell with 44% AVT and 7% efficiency based on a new chlorinated small molecule acceptor, Dyes Pigments, 166, 196, 10.1016/j.dyepig.2019.03.024 Sun, 2019, Highly-efficient semi-transparent organic solar cells utilising non-fullerene acceptors with optimised multilayer MoO3/Ag/MoO3 electrodes, Mater. Chem. Front., 3, 450, 10.1039/C8QM00610E López-López, 2014, Panchromatic porous specular back reflectors for efficient transparent dye solar cells, Phys. Chem. Chem. Phys., 16, 663, 10.1039/C3CP53939C Passoni, 2017, Multi-layered hierarchical nanostructures for transparent monolithic dye-sensitized solar cell architectures, Nanotechnology, 28, 245603, 10.1088/1361-6528/aa6f4b Li, 2017, Nanotube enhanced carbon grids as top electrodes for fully printable mesoscopic semitransparent perovskite solar cells, J. Mater. Chem. A Mater. Energy Sustain., 5, 10374, 10.1039/C7TA01383C Kwon, 2016, Parallelized nanopillar perovskites for semitransparent solar cells using an anodized aluminum oxide scaffold, Adv. Energy Mater., 6, 1601055, 10.1002/aenm.201601055 Bag, 2016, Efficient semi-transparent planar perovskite solar cells using a ‘molecular glue’, Nano Energy, 30, 542, 10.1016/j.nanoen.2016.10.044 Kim, 2016, Empowering semi-transparent solar cells with thermal-mirror functionality, Adv. Energy Mater., 6, 1502466, 10.1002/aenm.201502466 Lee, 2019, Thin metal top electrode and interface engineering for efficient and air-stable semitransparent perovskite solar cells, J. Alloys Compd., 797, 65, 10.1016/j.jallcom.2019.05.051 Islam, 2019, Highly stable semi-transparent MAPbI3 perovskite solar cells with operational output for 4000 h, Sol. Energy Mater. Sol. Cells, 195, 323, 10.1016/j.solmat.2019.03.004 Xiao, 2016, Hierarchical Dual-Scaffolds Enhance Charge Separation and Collection for High Efficiency Semitransparent Perovskite Solar Cells, Adv. Mater. Interfaces, 3, 1600484, 10.1002/admi.201600484 Yang, 2019, How to accurately report transparent solar cells, Joule, 3, 1803, 10.1016/j.joule.2019.06.005 Rowell, 2011, Transparent electrode requirements for thin film solar cell modules, Energy Environ. Sci., 4, 131, 10.1039/C0EE00373E Hunger, 2015, Transparent Metal Network with Low Haze and High Figure of Merit applied to Front and Back Electrodes in Semitransparent ITO-free Polymer Solar Cells, Energy Technol. (Weinheim), 3, 638, 10.1002/ente.201500014 Fang, 2018, High-Performance Hazy Silver Nanowire Transparent Electrodes through Diameter Tailoring for Semitransparent Photovoltaics, Adv. Funct. Mater., 28, 1705409, 10.1002/adfm.201705409 Bryant, 2014, A transparent conductive adhesive laminate electrode for high-efficiency organic-inorganic lead halide perovskite solar cells, Adv. Mater., 26, 7499, 10.1002/adma.201403939 Sohn, 2019, Silver nanowire networks: Mechano-electric properties and applications, Materials (Basel), 12, 2526, 10.3390/ma12162526 Bolotin, 2008, Ultrahigh electron mobility in suspended graphene, Solid State Commun., 146, 351, 10.1016/j.ssc.2008.02.024 Serway, 1998 Hu, 2010, Scalable coating and properties of transparent, flexible, silver nanowire electrodes, ACS Nano, 4, 2955, 10.1021/nn1005232 Um, 2015, Microgrid electrode for Si microwire solar cells with a fill factor of over 80%, Adv. Mater. Interfaces, 2, 1500347, 10.1002/admi.201500347 Peng, 2011, Building-integrated photovoltaics (BIPV) in architectural design in China, Energy Build., 43, 3592, 10.1016/j.enbuild.2011.09.032 Yoon, 2008, Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs, Nat. Mater., 7, 907, 10.1038/nmat2287 Yano, 2014, Prototype semi-transparent photovoltaic modules for greenhouse roof applications, Biosyst. Eng., 122, 62, 10.1016/j.biosystemseng.2014.04.003 Takeoka, 1993, Development and application of see-through a-Si solar cells, Sol. Energy Mater. Sol. Cells, 29, 243, 10.1016/0927-0248(93)90039-6 Fath, 2002, Industrial manufacturing of semitransparent crystalline silicon POWER solar cells, Sol. Energy Mater. Sol. Cells, 74, 127, 10.1016/S0927-0248(02)00056-9 Ordy, 1964, Visual Acuity in Newborn Primate Infants, Proc. Soc. Exp. Biol. Med., 115, 677, 10.3181/00379727-115-29004 Pastorelli, 2015, Enhanced light harvesting in semitransparent organic solar cells using an optical metal cavity configuration, Adv. Energy Mater., 5, 1400614, 10.1002/aenm.201400614 Yu, 2015, Highly efficient semitransparent polymer solar cells with color rendering index approaching 100 using one-dimensional photonic crystal, ACS Appl. Mater. Interfaces, 7, 9920, 10.1021/acsami.5b02039 Chen, 2013, High-performance semi-transparent polymer solar cells possessing tandem structures, Energy Environ. Sci., 6, 2714, 10.1039/c3ee40860d Wang, 2017, Fused hexacyclic nonfullerene acceptor with strong near-infrared absorption for semitransparent organic solar cells with 9.77% efficiency, Adv. Mater., 29, 1701308, 10.1002/adma.201701308 Meiss, 2011, Highly efficient semitransparent tandem organic solar cells with complementary absorber materials, Appl. Phys. Lett., 99, 143, 10.1063/1.3610551 Zhang, 2014, High-Performance, Transparent, Dye-Sensitized Solar Cells for See-Through Photovoltaic Windows, Adv. Energy Mater., 4, 1301966, 10.1002/aenm.201301966 Lin, 2012, Highly efficient bifacial transparent organic solar cells with power conversion efficiency greater than 3% and transparency of 50%, Org. Electron., 13, 1722, 10.1016/j.orgel.2012.05.029 Meiss, 2011, Near-infrared absorbing semitransparent organic solar cells, Appl. Phys. Lett., 99, 252, 10.1063/1.3660708 Xiao, 2015, Inverted, semitransparent small molecule photovoltaic cells, Appl. Phys. Lett., 107, 033901, 10.1063/1.4927142 Véron, 2014, NIR-absorbing heptamethine dyes with tailor-made counterions for application in light to energy conversion, Org. Lett., 16, 1044, 10.1021/ol4034385 Liu, 2017, Efficient semitransparent solar cells with high NIR responsiveness enabled by a small-bandgap electron acceptor, Adv. Mater., 29, 1606574, 10.1002/adma.201606574 Zhang, 2013, Semitransparent organic photovoltaics using a near-infrared absorbing cyanine dye, Sol. Energy Mater. Sol. Cells, 118, 157, 10.1016/j.solmat.2013.08.011 Chen, 2012, Visibly transparent polymer solar cells produced by solution processing, ACS Nano, 6, 7185, 10.1021/nn3029327 Yang, 2017, Limits of visibly transparent luminescent solar concentrators, Adv. Opt. Mater., 5, 1600851, 10.1002/adom.201600851 Kim, 2018, Phosphorescent Energy Downshifting for Diminishing Surface Recombination in Silicon Nanowire Solar Cells, Sci. Rep., 8, 16974, 10.1038/s41598-018-35356-w van Sark, 2008, Luminescent Solar Concentrators--a review of recent results, Opt. Express, 16, 21773, 10.1364/OE.16.021773 Meinardi, 2017, Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots, Nat. Photonics, 11, 177, 10.1038/nphoton.2017.5 Coropceanu, 2014, Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency, Nano Lett., 14, 4097, 10.1021/nl501627e Traverse, 2017, Emergence of highly transparent photovoltaics for distributed applications, Nat. Energy, 2, 849, 10.1038/s41560-017-0016-9 Sutherland, 2018, Cost competitive luminescent solar concentrators, Joule, 2, 203, 10.1016/j.joule.2018.02.004 Meinardi, 2017, Luminescent solar concentrators for building-integrated photovoltaics, Nat. Rev. Mater., 2, 1, 10.1038/natrevmats.2017.72 Zhao, 2013, Transparent Luminescent Solar Concentrators for Large-Area Solar Windows Enabled by Massive Stokes-Shift Nanocluster Phosphors, Adv. Energy Mater., 3, 1143, 10.1002/aenm.201300173 Yang, 2019, Integration of near-infrared harvesting transparent luminescent solar concentrators onto arbitrary surfaces, J. Lumin., 210, 239, 10.1016/j.jlumin.2019.02.042 Banal, 2015, A Transparent Planar Concentrator Using Aggregates of gem-Pyrene Ethenes, Adv. Energy Mater., 5, 1500818, 10.1002/aenm.201500818 Wang, 2011, Luminescent solar concentrator employing rare earth complex with zero self-absorption loss, Sol. Energy, 85, 2571, 10.1016/j.solener.2011.07.014 Erickson, 2014, Zero-reabsorption doped-nanocrystal luminescent solar concentrators, ACS Nano, 8, 3461, 10.1021/nn406360w Zhao, 2016, Absorption Enhancement in “Giant” Core/Alloyed-Shell Quantum Dots for Luminescent Solar Concentrator, Small, 12, 5354, 10.1002/smll.201600945 Bradshaw, 2015, Nanocrystals for luminescent solar concentrators, Nano Lett., 15, 1315, 10.1021/nl504510t Zhou, 2016, Near infrared, highly efficient luminescent solar concentrators, Adv. Energy Mater., 6, 1501913, 10.1002/aenm.201501913 Sanguineti, 2012, NIR emitting ytterbium chelates for colourless luminescent solar concentrators, Phys. Chem. Chem. Phys., 14, 6452, 10.1039/c2cp40791d Berends, 2016, Radiative and nonradiative recombination in CuInS2 nanocrystals and CuInS2-based core/shell nanocrystals, J. Phys. Chem. Lett., 7, 3503, 10.1021/acs.jpclett.6b01668 Li, 2015, Large Stokes shift and high efficiency luminescent solar concentrator incorporated with CuInS 2/ZnS quantum dots, Sci. Rep., 5, 17777, 10.1038/srep17777 Mateker, 2015, Minimal long-term intrinsic degradation observed in a polymer solar cell illuminated in an oxygen-free environment, Chem. Mater., 27, 404, 10.1021/cm504650a Campbell, 1986, The limiting efficiency of silicon solar cells under concentrated sunlight, IEEE Trans. Electron Dev., 33, 234, 10.1109/T-ED.1986.22472 Yang, 2019, How to Accurately Report Transparent Luminescent Solar Concentrators, Joule, 3, 2871, 10.1016/j.joule.2019.10.009 Yaghoubi, 2015, Large photocurrent response and external quantum efficiency in biophotoelectrochemical cells incorporating reaction center plus light harvesting complexes, Biomacromolecules, 16, 1112, 10.1021/bm501772x Tai, 2017, Emerging semitransparent solar cells: materials and device design, Adv. Mater., 29, 1700192, 10.1002/adma.201700192 Zimmermann, 2014, Erroneous efficiency reports harm organic solar cell research, Nat. Photonics, 8, 669, 10.1038/nphoton.2014.210 Hwang, 2017, Enhancement of light absorption in photovoltaic devices using textured polydimethylsiloxane stickers, ACS Appl. Mater. Interfaces, 9, 21276, 10.1021/acsami.7b04525 Tang, 2015, Profiles of phenolics, carotenoids and antioxidative capacities of thermal processed white, yellow, orange and purple sweet potatoes grown in Guilin, China, Food Sci. Hum. Wellness, 4, 123, 10.1016/j.fshw.2015.07.003 Leon, 2006, Color measurement in L∗ a∗ b∗ units from RGB digital images, Food Res. Int., 39, 1084, 10.1016/j.foodres.2006.03.006 Yang, 2019 Yoshikawa, 2017, Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nat. Energy, 2, 17032, 10.1038/nenergy.2017.32 Kurinec, 2018 Pern, 1997, Ethylene-vinyl acetate (EVA) encapsulants for photovoltaic modules: Degradation and discoloration mechanisms and formulation modifications for improved photostability, Die Angewandte Makromolekulare Chemie: Applied Macromolecular Chemistry and Physics, 252, 195, 10.1002/apmc.1997.052520114 Arndt, 2010 Roesch, 2015, Procedures and Practices for Evaluating Thin-Film Solar Cell Stability, Adv. Energy Mater., 5, 1501407, 10.1002/aenm.201501407 Madsen, 2011, Oxygen-and water-induced degradation of an inverted polymer solar cell: the barrier effect, Journal of Photonics for Energy, 1, 011104, 10.1117/1.3544010 Neugebauer, 2000, Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells, Sol. Energy Mater. Sol. Cells, 61, 35, 10.1016/S0927-0248(99)00094-X Niu, 2015, Review of recent progress in chemical stability of perovskite solar cells, J. Mater. Chem. A Mater. Energy Sustain., 3, 8970, 10.1039/C4TA04994B Kang, 2016, Bulk-heterojunction organic solar cells: five core technologies for their commercialization, Adv. Mater., 28, 7821, 10.1002/adma.201601197 Dong, 2016, Encapsulation of perovskite solar cells for high humidity conditions, ChemSusChem, 9, 2597, 10.1002/cssc.201600868 Shi, 2017, Accelerated lifetime testing of organic–inorganic perovskite solar cells encapsulated by polyisobutylene, ACS Appl. Mater. Interfaces, 9, 25073, 10.1021/acsami.7b07625 Choi, 2018, Enhancing stability for organic-inorganic perovskite solar cells by atomic layer deposited Al2O3 encapsulation, Sol. Energy Mater. Sol. Cells, 188, 37, 10.1016/j.solmat.2018.08.016 Taira, 2010, Silicon cells: catching rays, Nat. Photonics, 4, 602, 10.1038/nphoton.2010.193 Olivieri, 2014, Energy saving potential of semi-transparent photovoltaic elements for building integration, Energy, 76, 572, 10.1016/j.energy.2014.08.054 Horak, 2017, Cabin air temperature of parked vehicles in summer conditions: life-threatening environment for children and pets calculated by a dynamic model, Theor. Appl. Climatol., 130, 107, 10.1007/s00704-016-1861-3 Dadour, 2011, Temperature variations in a parked vehicle, Forensic Sci. Int., 207, 205, 10.1016/j.forsciint.2010.10.009