Modeling and experimental validation of interelectrode gap in counter-rotating electrochemical machining

International Journal of Mechanical Sciences - Tập 187 - Trang 105920 - 2020
Wenjian Cao, Dengyong Wang1, Di Zhu1
1College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China

Tài liệu tham khảo

Tipton, 1976, Principles of electrochemical machining, Electrochim Acta, 21, 657, 10.1016/0013-4686(76)85165-1

Lohrengel, 2016, Electrochemical machining - mechanisms of anodic dissolution, Electrochim Acta, 201, 348, 10.1016/j.electacta.2015.12.219

Rajurkar, 1999, New developments in electro-chemical machining, CIRP Annals, 48, 567, 10.1016/S0007-8506(07)63235-1

Schuster, 2000, Electrochemical micromachining, Science, 289, 98, 10.1126/science.289.5476.98

Klocke, 2013, Experimental research on the electrochemical machining of modern titanium- and nickel-based alloys for aero engine components, Proc CIRP, 6, 368, 10.1016/j.procir.2013.03.040

Weinmann, 2015, Electrochemical dissolution behaviour of Ti90Al6V4 and Ti60Al40 used for ECM applications, J Solid State Electrochem, 19, 485, 10.1007/s10008-014-2621-x

Liu, 2017, Effect of anodic behavior on electrochemical machining of TB6 titanium alloy, Electrochim Acta, 233, 190, 10.1016/j.electacta.2017.03.025

Klocke, 2015, Experimental research on the electrochemical machinability of selected γ-TiAl alloys for the manufacture of future aero engine components, Proc CIRP, 35, 50, 10.1016/j.procir.2015.08.050

Wang, 2001, ECM principle and application.

Riggs, 1980, Prediction of work piece geometry in electrochemical cavity sinking, Electrochim Acta, 26, 961, 10.1016/0013-4686(81)85064-5

Rajurkar, 1998, Minimization of machining allowance in electrochemical machining, CIRP Annals, 47, 165, 10.1016/S0007-8506(07)62809-1

Wang, 2019, Analysis and control of inter-electrode gap during leveling process in counter-rotating electrochemical machining, Chin J Aeronaut, 32, 2557, 10.1016/j.cja.2019.08.022

Ma, 2010, Pulse electrochemical finishing: modeling and experiment, J Mater Process Tech, 210, 852, 10.1016/j.jmatprotec.2010.01.016

Silva, 2003, Influence of electrolyte concentration on copying accuracy of precision-ECM, CIRP Annals, 52, 165, 10.1016/S0007-8506(07)60556-3

Béjar, 1993, On the determination of current efficiency in electrochemical machining with a variable gap, J Mater Process Tech, 37, 691, 10.1016/0924-0136(93)90128-S

Clifton, 2002, Ultrasonic measurement of the inter-electrode gap in electrochemical machining, Int J Mach Tools Manuf, 42, 1259, 10.1016/S0890-6955(02)00041-X

Lu, 2011, Experimental investigation on monitoring interelectrode gap of ECM with six-axis force sensor, Int J Adv Manuf Tech, 55, 565, 10.1007/s00170-010-3105-5

Rajurkar, 1995, Modelling and monitoring interelectrode gap in pulse electrochemical machining, CIRP Annals, 44, 177, 10.1016/S0007-8506(07)62301-4

Hewidy, 2005, Controlling of metal removal thickness in ECM process, J Mater Process Tech, 160, 348, 10.1016/j.jmatprotec.2003.08.007

Mount, 2003, An integrated strategy for materials characterization and process simulation in electrochemical machining, J Mater Process Tech, 138, 449, 10.1016/S0924-0136(03)00115-8

Wang, 2015, Convex shaping process simulation during counter-rotating electrochemical machining by using the finite element method, Chin J Aeronaut, 29, 534, 10.1016/j.cja.2015.06.022

Wang, 2018, Counter-rotating electrochemical machining of a combustor casing part using a frustum cone-like cathode tool, J Manuf Process, 35, 614, 10.1016/j.jmapro.2018.09.016

Wang, 2019, Counter-rotating electrochemical machining of a convex array using a cylindrical cathode tool with multifold angular velocity, J Electrochem Soc, 166, E412, 10.1149/2.1121913jes

Purcar, 2004, 3D electrochemical machining computer simulations, J Mater Process Tech, 149, 472, 10.1016/j.jmatprotec.2003.10.050

Deconinck, 2012, A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part I: theoretical basis., Electrochim Acta, 60, 321, 10.1016/j.electacta.2011.11.070

Topa, 2012, A transient multi-ion transport model for galvanized steel corrosion protection, Electrochim Acta, 77, 339, 10.1016/j.electacta.2012.06.021

Klocke, 2013, Modeling and simulation of the electrochemical machining (ECM) material removal process for the manufacture of aero engine components, Proc CIRP, 8, 265, 10.1016/j.procir.2013.06.100

Wang, 2018, Investigation of the material removal process in counter-rotating electrochemical machining, Proc CIRP, 68, 704, 10.1016/j.procir.2017.12.141

Wang, 2019, Analysis and control of inter-electrode gap during leveling process in counter-rotating electrochemical machining, Chin J Aeronaut, 32, 2557, 10.1016/j.cja.2019.08.022

Courant, 2011, I

Pattavanitch, 2010, Modelling of the electrochemical machining process by the boundary element method, CIRP Annals, 59, 243, 10.1016/j.cirp.2010.03.072

Wang, 2015, Investigation of the electrochemical dissolution behavior of Inconel 718 and 304 stainless steel at low current density in NaNO3 solution, Electrochim Acta, 156, 301, 10.1016/j.electacta.2014.12.155

Mount, 2003, The electrochemical machining characteristics of stainless steels, J Electrochem Soc, 150, D63, 10.1149/1.1545463

Wang, 2017, Effect of the breakdown time of a passive film on the electrochemical machining of rotating cylindrical electrode in NaNO3 solution, J Mater Process Tech, 239, 251, 10.1016/j.jmatprotec.2016.08.023

Saxena, 2020, A tool-based hybrid laser-electrochemical micromachining process: experimental investigations and synergistic effects, Int J Mach Tools Manuf, 155, 1, 10.1016/j.ijmachtools.2020.103569