Effect of Anodic Behavior on Electrochemical Machining of TB6 Titanium Alloy

Electrochimica Acta - Tập 233 - Trang 190-200 - 2017
Weidong Liu1, Sansan Ao1, Yang Li1, Zuming Liu1, Hui Zhang1, Sunusi Marwana Manladan2, Zhen Luo1,3, Zhiping Wang4
1School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
2Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
3Collaborative Innovation Center of Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China
4School of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China

Tài liệu tham khảo

Wilson, 1971, 87 Bannard, 1977, Electrochemical machining, J. Appl. Electrochem., 7, 1, 10.1007/BF00615526 Rajurkar, 1999, New developments in electro-chemical machining, CIRP Ann., 48, 567, 10.1016/S0007-8506(07)63235-1 Rajurkar, 2013, Review of electrochemical and electrodischarge machining, Procedia CIRP, 6, 13, 10.1016/j.procir.2013.03.002 Kozak, 1988, Theoretical and experimental investigation for profile electrolytic machining with rotating electrode, Proceeding of the 27th MTDR, 1, 281 Klocke, 2014, Turbomachinery component manufacture by application of electrochemical, electro-physical and photonic processes, CIRP Ann.-Manuf. Technol., 63, 703, 10.1016/j.cirp.2014.05.004 Klocke, 2012, Technological and economical comparison of roughing strategies via milling, EDM and ECM for titanium- and nickel-based blisks, Procedia CIPR, 2, 98, 10.1016/j.procir.2012.05.048 Sjostrom, 2011, Micropatterning of titanium surfaces using electrochemical micromachining with an ethylene glycol electrolyte, Mater. Lett., 65, 3489, 10.1016/j.matlet.2011.07.103 Michell-Smith, 2016, Electrochemical jet machining of titanium: overcoming passivation layers with ultrasonic assistance, Procedia CIRP, 42, 379, 10.1016/j.procir.2016.02.215 Speidel, 2016, Electrolyte jet machining of titanium alloys using novel electrolyte solutions, Precedia CIRP, 42, 367, 10.1016/j.procir.2016.02.200 Weinmann, 2015, Electrochemical dissolution behavior of Ti90Al6V4 and Ti60Al40 used for ECM applications, J. Solid State Electrochem., 19, 485, 10.1007/s10008-014-2621-x Liu, 2016, Elimination of the over cut from a repaired turbine blade tip post-machined by electrochemical machining, J. Mater. Process. Technol., 231, 27, 10.1016/j.jmatprotec.2015.12.003 Liu, 2015, Experimental investigation on electrochemical machining of γ-TiAl intermetallic, Procedia CIRP, 35, 20, 10.1016/j.procir.2015.08.049 Clifton, 2001, Electrochemical machining of gamma titanium aluminide intermetallics, J. Mater. Process. Technol., 108, 338, 10.1016/S0924-0136(00)00739-1 Liu, 2016, Jet electrochemical machining of TB6 titanium alloy, Inter. J. Adv. Manuf. Technol. Lohrengel, 2016, Electrochemical machining-mechanisms of anodic dissolution, Electrochim. Acta, 201, 348, 10.1016/j.electacta.2015.12.219 Lohrengel, 2003, Microscopic investigations of electrochemical machining of Fe in NaNO3, Electrochim. Acta, 48, 3203, 10.1016/S0013-4686(03)00372-4 Rosenkranz, 2005, The surface structure during pulsed ECM of iron in NaNO3, Electrochim. Acta, 50, 2009, 10.1016/j.electacta.2004.09.010 Weber, 2015, Electrochemical dissolution of cast iron in NaNO3 electrolyte, J. Appl. Electrochem., 45, 591, 10.1007/s10800-015-0809-0 Lohrengel, 1993, Thin anodic oxide layers on aluminium and other valve metals: high field regime, Mater. Sci. Eng. R: Reports, 11, 243, 10.1016/0927-796X(93)90005-N Schneider, 2011, In-situ investigation of the interplay between microstructure and anodic copper dissolution under near-ECM conditions - Part 1: The active state, Electrochim. Acta, 56, 7628, 10.1016/j.electacta.2011.06.075 Schneider, 2012, In-situ investigation of the interplay between microstructure and anodic copper dissolution under near-ECM conditions - Part 2: The transpassive state, Electrochim. Acta, 70, 76, 10.1016/j.electacta.2012.03.066 Datta, 1980, On the role of mass transport in high rate dissolution of iron and nickel in ECM electrolytes - I. Chloride solutions, Electrochim. Acta, 25, 1255, 10.1016/0013-4686(80)87130-1 Schneider, 2013, Anodic dissolution behaviour and surface texture development of cobalt under electrochemical machining conditions, Electrochim. Acta, 106, 279, 10.1016/j.electacta.2013.05.070 Schubert, 2013, The mechanism of anodic dissolution of cobalt in neutral and alkaline electrolyte at high current density, Electrochim. Acta, 113, 748, 10.1016/j.electacta.2013.06.093 Haisch, 2001, Electrochemical machining of the steel 100Cr6 in aqueous NaCl and NaNO3 solutions: microstructure of surface films formed by carbides, Electrochim. Acta, 47, 235, 10.1016/S0013-4686(01)00561-8 Grimm, 1994, Salt films formed during mass transport controlled dissolution of iron-chromium alloys in concentrated chloride media, Corros. Sci., 36, 1847, 10.1016/0010-938X(94)90023-X Bannard, 1975, On the electrochemical machining of some titanium alloys in bromide electrolytes, J. Appl. Electrochem., 6, 477, 10.1007/BF00614536 Gonzalez, 1999, Study of the corrosion of titanium and some of its alloys for biomedical and dental implant applications, J. Electroanal. Chem., 471, 109, 10.1016/S0022-0728(99)00260-0 Pan, 1996, Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application, Electrochim. Acta, 41, 1143, 10.1016/0013-4686(95)00465-3 Wang, 2017, Effect of the breakdown time of a passive film on the electrochemical machining of rotating cylindrical electrode in NaNO3 solution, J. Mater. Process. Technol., 239, 251, 10.1016/j.jmatprotec.2016.08.023 Hewidy, 2007, Modelling the performance of ECM assisted by low vibrations, J. Mater. Process. Technol., 189, 466, 10.1016/j.jmatprotec.2007.02.032 Takuma Kawanaka, 2014, Selective surface texturing using electrolyte jet machining, Procedia CIRP, 13, 345, 10.1016/j.procir.2014.04.058 Natsu, 2008, Research on generation of three dimensional surface with micro-electrolyte jet machining, CIRP-J. Manuf. Sci. Technol., 1, 27, 10.1016/j.cirpj.2008.06.006 Zhou, 2013, Experimental study on milling hardening of TB6 titanium alloy, J. Beijing Univ. Aeronaut. Astronaut., 1, 135 Hinduja, 2013, Modelling of ECM and EDM processes, CIRP Ann.-Manuf. Technol., 62, 775, 10.1016/j.cirp.2013.05.011 Schenk, 2001, The corrosion properties of titanium and titanium alloys, 145 Ittah, 2014, Pitting of corrosion evaluation of titanium in NH4Br solutions by electrochemical methods, Int. J. Electrochem. Sci., 9, 633, 10.1016/S1452-3981(23)07745-3 Jiang, 2011, Investigation of titanium based on a modified point defect model, Corros. Sci., 53, 815, 10.1016/j.corsci.2010.11.015 Sazou, 2012, Understanding of the effect of bromides on the stability of titanium oxide films based on a point defect model, Electrochim. Acta, 76, 48, 10.1016/j.electacta.2012.04.158 Dugdale, 1964, The anodic polarization of titanium in halide solutions, Corros. Sci., 4, 387, 10.1016/0010-938X(64)90041-1 Beck, 1973, Pitting of titanium I. titanium-foil experiments, J. Electrochem. Soc., 120, 1310, 10.1149/1.2403253 Beck, 1973, Pitting of titanium II. titanium-dimensional pitting experiments, J. Electrochem. Soc., 120, 1317, 10.1149/1.2403254 Kaesche, 1985 Macdonald, 1992, Steady-state passive films: interfacial kinetic effects and diagnostic criteria, J. Electrochem. Soc., 139, 170, 10.1149/1.2069165 Strehblow, 1995, Corrosion Mechanisms in Theory and Practice, 201 Schuster, 2000, Electrochemical micromachining, Science, 289, 98, 10.1126/science.289.5476.98 Landolt, 1987, Fundamental aspects of electropolishing, Electrochim. Acta, 32, 1, 10.1016/0013-4686(87)87001-9 EIS study of Ti and its alloys in biological media, J Electroanal. Chem. 526 (2002) 53-62. Fushimi, 2009, Anodic dissolution of titanium in chloride-containing ethylene glycol solution, Electrochim. Acta, 55, 258, 10.1016/j.electacta.2009.08.047 Aladjem, 1973, Anodic oxidation of titanium and its alloys, J. Mater. Sci., 8, 688, 10.1007/BF00561225 Schultze, 1982, Capacity and photocurrent measurements at passive titanium electrodes, Phys. Chem., 86, 276 Schultze, 2000, Stability, reactivity and breakdown of passive films. Problems of recent and future research, Electrochim. Acta, 45, 2499, 10.1016/S0013-4686(00)00347-9 E. McCafferty, Introduction to Corrosion Science, New York, (2010) 283. Frankel, 1998, Pitting corrosion of metals, J. Electrochem. Soc., 135, 2186, 10.1149/1.1838615 Mankowski, 1975, Studies on accumulation of chloride ions in pits growing during anodic polarization, Corros. Sci., 15, 493, 10.1016/0010-938X(75)90015-3