Effect of Anodic Behavior on Electrochemical Machining of TB6 Titanium Alloy
Tài liệu tham khảo
Wilson, 1971, 87
Bannard, 1977, Electrochemical machining, J. Appl. Electrochem., 7, 1, 10.1007/BF00615526
Rajurkar, 1999, New developments in electro-chemical machining, CIRP Ann., 48, 567, 10.1016/S0007-8506(07)63235-1
Rajurkar, 2013, Review of electrochemical and electrodischarge machining, Procedia CIRP, 6, 13, 10.1016/j.procir.2013.03.002
Kozak, 1988, Theoretical and experimental investigation for profile electrolytic machining with rotating electrode, Proceeding of the 27th MTDR, 1, 281
Klocke, 2014, Turbomachinery component manufacture by application of electrochemical, electro-physical and photonic processes, CIRP Ann.-Manuf. Technol., 63, 703, 10.1016/j.cirp.2014.05.004
Klocke, 2012, Technological and economical comparison of roughing strategies via milling, EDM and ECM for titanium- and nickel-based blisks, Procedia CIPR, 2, 98, 10.1016/j.procir.2012.05.048
Sjostrom, 2011, Micropatterning of titanium surfaces using electrochemical micromachining with an ethylene glycol electrolyte, Mater. Lett., 65, 3489, 10.1016/j.matlet.2011.07.103
Michell-Smith, 2016, Electrochemical jet machining of titanium: overcoming passivation layers with ultrasonic assistance, Procedia CIRP, 42, 379, 10.1016/j.procir.2016.02.215
Speidel, 2016, Electrolyte jet machining of titanium alloys using novel electrolyte solutions, Precedia CIRP, 42, 367, 10.1016/j.procir.2016.02.200
Weinmann, 2015, Electrochemical dissolution behavior of Ti90Al6V4 and Ti60Al40 used for ECM applications, J. Solid State Electrochem., 19, 485, 10.1007/s10008-014-2621-x
Liu, 2016, Elimination of the over cut from a repaired turbine blade tip post-machined by electrochemical machining, J. Mater. Process. Technol., 231, 27, 10.1016/j.jmatprotec.2015.12.003
Liu, 2015, Experimental investigation on electrochemical machining of γ-TiAl intermetallic, Procedia CIRP, 35, 20, 10.1016/j.procir.2015.08.049
Clifton, 2001, Electrochemical machining of gamma titanium aluminide intermetallics, J. Mater. Process. Technol., 108, 338, 10.1016/S0924-0136(00)00739-1
Liu, 2016, Jet electrochemical machining of TB6 titanium alloy, Inter. J. Adv. Manuf. Technol.
Lohrengel, 2016, Electrochemical machining-mechanisms of anodic dissolution, Electrochim. Acta, 201, 348, 10.1016/j.electacta.2015.12.219
Lohrengel, 2003, Microscopic investigations of electrochemical machining of Fe in NaNO3, Electrochim. Acta, 48, 3203, 10.1016/S0013-4686(03)00372-4
Rosenkranz, 2005, The surface structure during pulsed ECM of iron in NaNO3, Electrochim. Acta, 50, 2009, 10.1016/j.electacta.2004.09.010
Weber, 2015, Electrochemical dissolution of cast iron in NaNO3 electrolyte, J. Appl. Electrochem., 45, 591, 10.1007/s10800-015-0809-0
Lohrengel, 1993, Thin anodic oxide layers on aluminium and other valve metals: high field regime, Mater. Sci. Eng. R: Reports, 11, 243, 10.1016/0927-796X(93)90005-N
Schneider, 2011, In-situ investigation of the interplay between microstructure and anodic copper dissolution under near-ECM conditions - Part 1: The active state, Electrochim. Acta, 56, 7628, 10.1016/j.electacta.2011.06.075
Schneider, 2012, In-situ investigation of the interplay between microstructure and anodic copper dissolution under near-ECM conditions - Part 2: The transpassive state, Electrochim. Acta, 70, 76, 10.1016/j.electacta.2012.03.066
Datta, 1980, On the role of mass transport in high rate dissolution of iron and nickel in ECM electrolytes - I. Chloride solutions, Electrochim. Acta, 25, 1255, 10.1016/0013-4686(80)87130-1
Schneider, 2013, Anodic dissolution behaviour and surface texture development of cobalt under electrochemical machining conditions, Electrochim. Acta, 106, 279, 10.1016/j.electacta.2013.05.070
Schubert, 2013, The mechanism of anodic dissolution of cobalt in neutral and alkaline electrolyte at high current density, Electrochim. Acta, 113, 748, 10.1016/j.electacta.2013.06.093
Haisch, 2001, Electrochemical machining of the steel 100Cr6 in aqueous NaCl and NaNO3 solutions: microstructure of surface films formed by carbides, Electrochim. Acta, 47, 235, 10.1016/S0013-4686(01)00561-8
Grimm, 1994, Salt films formed during mass transport controlled dissolution of iron-chromium alloys in concentrated chloride media, Corros. Sci., 36, 1847, 10.1016/0010-938X(94)90023-X
Bannard, 1975, On the electrochemical machining of some titanium alloys in bromide electrolytes, J. Appl. Electrochem., 6, 477, 10.1007/BF00614536
Gonzalez, 1999, Study of the corrosion of titanium and some of its alloys for biomedical and dental implant applications, J. Electroanal. Chem., 471, 109, 10.1016/S0022-0728(99)00260-0
Pan, 1996, Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application, Electrochim. Acta, 41, 1143, 10.1016/0013-4686(95)00465-3
Wang, 2017, Effect of the breakdown time of a passive film on the electrochemical machining of rotating cylindrical electrode in NaNO3 solution, J. Mater. Process. Technol., 239, 251, 10.1016/j.jmatprotec.2016.08.023
Hewidy, 2007, Modelling the performance of ECM assisted by low vibrations, J. Mater. Process. Technol., 189, 466, 10.1016/j.jmatprotec.2007.02.032
Takuma Kawanaka, 2014, Selective surface texturing using electrolyte jet machining, Procedia CIRP, 13, 345, 10.1016/j.procir.2014.04.058
Natsu, 2008, Research on generation of three dimensional surface with micro-electrolyte jet machining, CIRP-J. Manuf. Sci. Technol., 1, 27, 10.1016/j.cirpj.2008.06.006
Zhou, 2013, Experimental study on milling hardening of TB6 titanium alloy, J. Beijing Univ. Aeronaut. Astronaut., 1, 135
Hinduja, 2013, Modelling of ECM and EDM processes, CIRP Ann.-Manuf. Technol., 62, 775, 10.1016/j.cirp.2013.05.011
Schenk, 2001, The corrosion properties of titanium and titanium alloys, 145
Ittah, 2014, Pitting of corrosion evaluation of titanium in NH4Br solutions by electrochemical methods, Int. J. Electrochem. Sci., 9, 633, 10.1016/S1452-3981(23)07745-3
Jiang, 2011, Investigation of titanium based on a modified point defect model, Corros. Sci., 53, 815, 10.1016/j.corsci.2010.11.015
Sazou, 2012, Understanding of the effect of bromides on the stability of titanium oxide films based on a point defect model, Electrochim. Acta, 76, 48, 10.1016/j.electacta.2012.04.158
Dugdale, 1964, The anodic polarization of titanium in halide solutions, Corros. Sci., 4, 387, 10.1016/0010-938X(64)90041-1
Beck, 1973, Pitting of titanium I. titanium-foil experiments, J. Electrochem. Soc., 120, 1310, 10.1149/1.2403253
Beck, 1973, Pitting of titanium II. titanium-dimensional pitting experiments, J. Electrochem. Soc., 120, 1317, 10.1149/1.2403254
Kaesche, 1985
Macdonald, 1992, Steady-state passive films: interfacial kinetic effects and diagnostic criteria, J. Electrochem. Soc., 139, 170, 10.1149/1.2069165
Strehblow, 1995, Corrosion Mechanisms in Theory and Practice, 201
Schuster, 2000, Electrochemical micromachining, Science, 289, 98, 10.1126/science.289.5476.98
Landolt, 1987, Fundamental aspects of electropolishing, Electrochim. Acta, 32, 1, 10.1016/0013-4686(87)87001-9
EIS study of Ti and its alloys in biological media, J Electroanal. Chem. 526 (2002) 53-62.
Fushimi, 2009, Anodic dissolution of titanium in chloride-containing ethylene glycol solution, Electrochim. Acta, 55, 258, 10.1016/j.electacta.2009.08.047
Aladjem, 1973, Anodic oxidation of titanium and its alloys, J. Mater. Sci., 8, 688, 10.1007/BF00561225
Schultze, 1982, Capacity and photocurrent measurements at passive titanium electrodes, Phys. Chem., 86, 276
Schultze, 2000, Stability, reactivity and breakdown of passive films. Problems of recent and future research, Electrochim. Acta, 45, 2499, 10.1016/S0013-4686(00)00347-9
E. McCafferty, Introduction to Corrosion Science, New York, (2010) 283.
Frankel, 1998, Pitting corrosion of metals, J. Electrochem. Soc., 135, 2186, 10.1149/1.1838615
Mankowski, 1975, Studies on accumulation of chloride ions in pits growing during anodic polarization, Corros. Sci., 15, 493, 10.1016/0010-938X(75)90015-3