Electrochemical Dissolution Behavior of the Nickel-Based Cast Superalloy K423A in NaNO3 Solution

Electrochimica Acta - Tập 253 - Trang 379-389 - 2017
YongCheng Ge1,2, Zengwei Zhu1,2, Dengyong Wang1,2
1Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People’s Republic of China
2Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing 210016, People’s Republic of China

Tài liệu tham khảo

Thakur, 2015, State-of-the-art in surface integrity in machining of nickel-based super alloys, Int. J. Mach. Tool. Manuf., 100, 25, 10.1016/j.ijmachtools.2015.10.001 Miller, 1995, Advanced materials mean advanced engines, Interdiscip. Sci. Rev., 21, 117, 10.1179/isr.1996.21.2.117 Yao, 1996, Development of high strength nickel-base cast superalloy with superior creep rupture life, Scr. Mater., 35, 953, 10.1016/1359-6462(96)00211-4 Ezugwu, 2005, Key improvements in the machining of difficult-to-cut aerospace superalloys, Int. J. Mach. Tool. Manuf., 45, 1353, 10.1016/j.ijmachtools.2005.02.003 Ezugwu, 2003, An overview of the machinability of aeroengine alloys, J. Mater. Process. Technol., 134, 233, 10.1016/S0924-0136(02)01042-7 Zhu, 2015, Cathode design and experimental study on the rotate-print electrochemical machining of revolving parts, Int. J. Adv. Manuf. Technol., 80, 1957, 10.1007/s00170-015-7172-5 Rajurkar, 1999, New developments in electro-chemical machining, CIRP Ann. Manuf. Technol., 48, 567, 10.1016/S0007-8506(07)63235-1 Hoare, 1973, Cheminform abstract: Electrochemical machining of high-temperature alloys in NaClO3 solutions, J. Electrochem. Soc., 120, 1071, 10.1149/1.2403632 Makino, 1983, Effects of cobalt on high rate dissolution behaviour of nickel-base superalloys in NaNO3 and NaCl solutions, Precis. Eng., 5, 65, 10.1016/0141-6359(83)90033-8 Laboda, 1973, ECM of nickel in NaNO3 solution, J. Electrochem. Soc., 120, 643, 10.1149/1.2403523 Klocke, 2013, Experimental research on the electrochemical machining of modern titanium- and nickel-based alloys for aero engine components, Proc. CIRP, 6, 368, 10.1016/j.procir.2013.03.040 Huang, 2008, The electrochemical polishing behavior of the Inconel 718 alloy in perchloric-acetic mixed acids, Corros. Sci., 50, 480, 10.1016/j.corsci.2007.07.005 Wang, 2015, Investigation of the electrochemical dissolution behavior of Inconel 718 and 304 stainless steel at low current density in NaNO3 solution, Electrochim. Acta, 156, 301, 10.1016/j.electacta.2014.12.155 Yao, 1997, The microstructural characteristics in a newly developed nickel-base cast superalloy, Mater. Charact., 38, 97, 10.1016/S1044-5803(97)80029-0 Pollock, 2006, Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties, J. Propuls. Power, 22, 361, 10.2514/1.18239 Tong, 2014, Evaluation of a serviced turbine blade made of GH4033 wrought superalloy, Mater. Sci. Eng. A, 618, 605, 10.1016/j.msea.2014.09.025 Wereszczak, 2002, Dimensional changes and creep of silica core ceramics used in investment casting of superalloys, J. Mater. Sci., 37, 4235, 10.1023/A:1020060508311 Chen, 2006, Effect of casting process on mechanical property of cast alloy K423A, J. Iron Steel Res. Int., 18, 51 Li, 2006, Research for investment casting of k423a case, Foundry, 55, 249 Mcgeough, 1974 Sims, 1987, 73 Sajjadi, 2006, Microstructure evolution of high-performance Ni-base superalloy GTD-111 with heat treatment parameters, J. Mater. Process. Technol., 175, 376, 10.1016/j.jmatprotec.2005.04.021 Yin, 2007, Effect of melt treatment on carbides formation in a cast nickel-base superalloy M963, J. Mater. Process. Technol., 183, 440, 10.1016/j.jmatprotec.2006.11.002 Kaplan, 2016, Investigation of oxide bifilms in investment cast superalloy IN100: Part II. characterization, Metall. Mater. Trans. A, 47, 2362, 10.1007/s11661-016-3422-x Xu, 2016, Electrochemical machining of high-temperature titanium alloy Ti60, Proc. CIRP, 42, 125, 10.1016/j.procir.2016.02.206 Weinmann, 2015, Electrochemical dissolution behaviour of Ti90Al6V4 and Ti60Al40 used for ECM applications, J. Solid State Electrochem., 19, 485, 10.1007/s10008-014-2621-x Schubert, 2013, The mechanism of anodic dissolution of cobalt in neutral and alkaline electrolyte at high current density, Electrochim. Acta, 113, 748, 10.1016/j.electacta.2013.06.093 Haisch, 2001, Electrochemical machining of the steel 100Cr6 in aqueous NaCl and NaNO3 solutions: Microstructure of surface films formed by carbides, Electrochim. Acta, 47, 235, 10.1016/S0013-4686(01)00561-8 Wang, 2017, Effect of the breakdown time of a passive film on the electrochemical machining of rotating cylindrical electrode in NaNO3 solution, J. Mater. Process. Technol., 239, 251, 10.1016/j.jmatprotec.2016.08.023 Rosenkranz, 2005, The surface structure during pulsed ECM of iron in NaNO3, Electrochim. Acta, 50, 2009, 10.1016/j.electacta.2004.09.010 Lohrengel, 2003, Microscopic investigations of electrochemical machining of Fe in NaNO3, Electrochim. Acta, 48, 3203, 10.1016/S0013-4686(03)00372-4 Weber, 2015, Electrochemical dissolution of cast iron in NaNO3 electrolyte, J. Appl. Electrochem., 45, 591, 10.1007/s10800-015-0809-0 Aspinwall, 2007, Profiled superabrasive grinding wheels for the machining of a nickel based superalloy, CIRP Ann. Manuf. Technol., 56, 335, 10.1016/j.cirp.2007.05.077 Curtis, 2009, Electrochemical superabrasive machining of a nickel-based aeroengine alloy using mounted grinding points, CIRP Ann. Manuf. Technol., 58, 173, 10.1016/j.cirp.2009.03.074