Electrochemical dissolution behavior of Ti-45Al-2Mn-2Nb+0.8 vol% TiB2 XD alloy in NaCl and NaNO3 solutions

Corrosion Science - Tập 157 - Trang 357-369 - 2019
Yudi Wang1, Zhengyang Xu1, An Zhang1
1National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People’s Republic of China

Tài liệu tham khảo

Bewlay, 2013, The science, technology, and implementation of TiAl alloys in commercial aircraft engines, MRS Proc., 1516, 49, 10.1557/opl.2013.44 Klocke, 2018, Comparison of the electrochemical machinability of electron beam melted and casted gamma titanium aluminide TNB-V5, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 232, 586, 10.1177/0954405416687147 Kothari, 2012, Advances in gamma titanium aluminides and their manufacturing techniques, Prog. Aerosp. Sci., 55, 1, 10.1016/j.paerosci.2012.04.001 Li, 2017, Fatigue assessment of Ti-45Al-2Mn-2NbXD sub-element specimens, Intermetallics, 80, 33, 10.1016/j.intermet.2016.10.002 Hood, 2014, Workpiece surface integrity when slot milling γ-TiAl intermetallic alloy, CIRP Ann. Manuf. Technol., 63, 53, 10.1016/j.cirp.2014.03.071 Aspinwall, 2005, The machining of γ-TiAI intermetallic alloys, CIRP Ann. Manuf. Technol., 54, 99, 10.1016/S0007-8506(07)60059-6 Hood, 2013, High speed ball nose end milling of gamma-TiAl alloys, Intermetallics, 32, 284, 10.1016/j.intermet.2012.09.011 Beranoagirre, 2011, Drilling of intermetallic alloys gamma TiAl, 1023, 10.1063/1.3552313 Klocke, 2013, High performance cutting of gamma titanium aluminides: influence of lubricoolant strategy on tool wear and surface integrity, Wear, 302, 1136, 10.1016/j.wear.2012.12.035 Rajurkar, 1999, New developments in electro-chemical machining, CIRP Ann. Manuf. Technol., 48, 567, 10.1016/S0007-8506(07)63235-1 Xu, 2013, A high efficiency electrochemical machining method of blisk channels, CIRP Ann. Manuf. Technol., 62, 187, 10.1016/j.cirp.2013.03.068 Zhu, 2015, Cathode design and experimental study on the rotate-print electrochemical machining of revolving parts, Int. J. Adv. Manuf. Technol., 80, 1957, 10.1007/s00170-015-7172-5 Sharman, 2001, The effects of machined workpiece surface integrity on the fatigue life of γ-titanium aluminide, Int. J. Mach. Tools Manuf., 41, 1681, 10.1016/S0890-6955(01)00034-7 Clifton, 2001, Electrochemical machining of gamma titanium aluminide intermetallics, J. Mater. Process. Technol., 108, 338, 10.1016/S0924-0136(00)00739-1 Baehre, 2016, Electrochemical dissolution behavior of titanium and titanium-based alloys in different electrolytes, Procedia CIRP, 42, 137, 10.1016/j.procir.2016.02.208 Bannard, 1976, Electrochemical dissolution behaviour of Ti90Al6V4 and Ti60Al40 used for ECM applications, J. Appl. Electrochem., 6, 477, 10.1007/BF00614536 Liu, 2015, Experimental investigation on electrochemical machining of γ-TiAl intermetallic, Procedia CIRP, 35, 20, 10.1016/j.procir.2015.08.049 Li, 2018, Experimental study on the ECM and PECM of pressed and casted γ-TiAl alloys for aero engine applications, Procedia CIRP, 68, 768, 10.1016/j.procir.2017.12.135 Klocke, 2015, Experimental research on the electrochemical machinability of selected γ-TiAl alloys for the manufacture of future aero engine components, Procedia CIRP, 35, 50, 10.1016/j.procir.2015.08.050 Xu, 2016, Electrochemical machining of high-temperature titanium alloy Ti60, Procedia CIRP, 42, 125, 10.1016/j.procir.2016.02.206 Wang, 2017, Electrochemical machining properties of the laser rapid formed inconel 718 alloy in NaNO3 solution, J. Electrochem. Soc., 164, E548, 10.1149/2.1221714jes Dimčić, 2004, TiAl – a new high temperature material for turbocharger rotors, Mater. Sci. Forum, 453–454, 169, 10.4028/www.scientific.net/MSF.453-454.169 Wu, 2004, Alloy and process development of TiAl, J. Mater. Sci., 39, 3935, 10.1023/B:JMSC.0000031474.29156.17 Chaturvedi, 1997, Electron beam welding of a Ti–45Al–2Nb–2Mn+ 0.8 vol.% TiB2 XD alloy, Mater. Sci. Eng. A., 239, 605, 10.1016/S0921-5093(97)00637-0 Larsen, 1991, Investment-cast processing of XD™ near-γ titanium aluminides, Mater. Sci. Eng. A, 144, 45, 10.1016/0921-5093(91)90208-5 Wang, 2015, Investigation of the electrochemical dissolution behavior of Inconel 718 and 304 stainless steel at low current density in NaNO3 solution, Electrochim. Acta, 156, 301, 10.1016/j.electacta.2014.12.155 Xu, 2008 Pan, 1996, Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application, Electrochim. Acta, 41, 1143, 10.1016/0013-4686(95)00465-3 Diamanti, 2010, Characterisation of titanium oxide films by potentiodynamic polarisation and electrochemical impedance spectroscopy, Corros. Eng. Sci. Technol., 45, 428, 10.1179/147842208X373191 González, 1999, Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications, J. Electroanal. Chem., 471, 109, 10.1016/S0022-0728(99)00260-0 Bannard, 1976, On the electrochemical machining of some titanium alloys in bromide electrolytes, J. Appl. Electrochem., 6, 477, 10.1007/BF00614536 Geng, 2000, Initial oxidation of Ti–Al intermetallics: an in situ MXPS study, Appl. Surf. Sci., 158, 64, 10.1016/S0169-4332(99)00583-8 Maurice, 2007, XPS study of the initial stages of oxidation of α2-Ti3Al and γ-TiAl intermetallic alloys, Acta Mater., 55, 3315, 10.1016/j.actamat.2007.01.030 Pan, 2015, Vibration analysis and experiments on electrochemical micro-machining using cathode vibration feed system, Int. J. Precis. Eng. Manuf. Technol., 16, 143, 10.1007/s12541-015-0018-0 Curtis, 2009, Electrochemical superabrasive machining of a nickel-based aeroengine alloy using mounted grinding points, CIRP Ann. Manuf. Technol., 58, 173, 10.1016/j.cirp.2009.03.074 Alves, 2017, Corrosion mechanisms in titanium oxide-based films produced by anodic treatment, Electrochim. Acta, 234, 16, 10.1016/j.electacta.2017.03.011 McCafferty, 2010, 283 Jiang, 2011, Investigation of pitting resistance of titanium based on a modified point defect model, Corros. Sci., 53, 815, 10.1016/j.corsci.2010.11.015 Sazou, 2012, Understanding the effect of bromides on the stability of titanium oxide films based on a point defect model, Electrochim. Acta, 76, 48, 10.1016/j.electacta.2012.04.158 Dugdale, 1964, The anodic polarization of titanium in halide solutions, Corros. Sci., 4, 397, 10.1016/0010-938X(64)90041-1 Beck, 1973, Pitting of titanium I. titanium‐foil experiments, J. Electrochem. Soc., 120, 1310, 10.1149/1.2403253 Haisch, 2001, Electrochemical machining of the steel 100Cr6 in aqueous NaCl and NaNO3 solutions: microstructure of surface films formed by carbides, Electrochim. Acta, 47, 235, 10.1016/S0013-4686(01)00561-8