Materials and processing issues in vertical GaN power electronics

Materials Science in Semiconductor Processing - Tập 78 - Trang 75-84 - 2018
Jie Hu1, Yuhao Zhang1, Min Sun1, Daniel Piedra1, Nadim Chowdhury1, Tomás Palacios1
1Microsystems Technology Laboratories, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Tài liệu tham khảo

Mohan, 2007

Baliga, 1982, Semiconductors for high-voltage, vertical channel field-effect transistors, J. Appl. Phys., 53, 1759, 10.1063/1.331646

Baliga, 1989, Power semiconductor device figure of merit for high-frequency applications, IEEE Electron Dev. Lett., 10, 455, 10.1109/55.43098

Uemoto, 2007, Gate injection transistor (GIT)A normally-off AlGaN/GaN power transistor using conductivity modulation, IEEE Trans. Electron Dev., 54, 3393, 10.1109/TED.2007.908601

Cai, 2005, High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment, IEEE Electron Dev. Lett., 26, 435, 10.1109/LED.2005.851122

Lenci, 2013, Au-free AlGaN/GaN power diode on 8-in Si substrate with gated edge termination, IEEE Electron Dev. Lett., 34, 1035, 10.1109/LED.2013.2267933

Hu, 2016, Performance optimization of Au-free lateral AlGaN/GaN Schottky barrier diode with gated edge termination on 200-mm silicon substrate, IEEE Trans. Electron Dev., 63, 997, 10.1109/TED.2016.2515566

Hu, 2016, Statistical analysis of the impact of anode recess on the electrical characteristics of AlGaN/GaN Schottky diodes with gated edge termination, IEEE Trans. Electron Dev., 63, 3451, 10.1109/TED.2016.2587103

Lidow, 2014

Vetury, 2001, The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs, IEEE Trans. Electron Dev., 48, 560, 10.1109/16.906451

Hu, 2015, Current transient spectroscopy for trapping analysis on Au-free AlGaN/GaN Schottky barrier diode, Appl. Phys. Lett., 106, 083502, 10.1063/1.4913575

Meneghesso, 2008, Reliability of GaN high-electron-mobility transistors: state of the art and perspectives, IEEE Trans. Dev. Mater. Reliab., 8, 332, 10.1109/TDMR.2008.923743

Hu, 2016, On the identification of buffer trapping for bias-dependent dynamic RON of AlGaN/GaN Schottky barrier diode with AlGaN: C back barrier, IEEE Electron Dev. Lett., 37, 310, 10.1109/LED.2016.2514408

Zhang, 2013, Electrothermal simulation and thermal performance study of GaN vertical and lateral power transistors, IEEE Trans. Electron Dev., 60, 2224, 10.1109/TED.2013.2261072

Geng, 2012, Growth and strain characterization of high quality GaN crystal by HVPE, J. Cryst. Growth, 350, 44, 10.1016/j.jcrysgro.2011.12.020

Zhang, 2017, High-performance 500 V quasi-and fully-vertical GaN-on-Si pn diodes, IEEE Electron Dev. Lett., 38, 248, 10.1109/LED.2016.2646669

Motoki, 2010, Development of gallium nitride substrates, SEI Tech. Rev., 70, 28

Paskova, 2010, GaN substrates for III-nitride devices, Proc. IEEE, 98, 1324, 10.1109/JPROC.2009.2030699

Maruska, 1969, The preparation and properties of Vapor-Deposited single-crystal-line GaN, Appl. Phys. Lett., 15, 327, 10.1063/1.1652845

Motoki, 2001, Preparation of large freestanding GaN substrates by hydride vapor phase epitaxy using GaAs as a starting substrate, Jpn. J. Appl. Phys., 40, L140, 10.1143/JJAP.40.L140

Kizilyalli, 2015, Vertical power pn diodes based on bulk GaN, IEEE Trans. Electron Dev., 62, 414, 10.1109/TED.2014.2360861

Baliga, 2010

Kizilyalli, 2015, 4-kV and 2.8-mΩcm2 vertical GaN pn diodes with low leakage currents, IEEE Electron Dev. Lett., 36, 1073, 10.1109/LED.2015.2474817

Wetzel, 2001, Dx-like behavior of oxygen in gan, Phys. B: Condens. Matter, 302, 23, 10.1016/S0921-4526(01)00402-1

Wright, 2005, Substitutional and interstitial oxygen in wurtzite gan, J. Appl. Phys., 98, 103531, 10.1063/1.2137446

Tanaka, 2015, Roles of lightly doped carbon in the drift layers of vertical n-GaN Schottky diode structures on freestanding GaN substrates, Jpn. J. Appl. Phys., 54, 041002, 10.7567/JJAP.54.041002

Greenlee, 2015, Symmetric multicycle rapid thermal annealing: enhanced activation of implanted dopants in GaN, ECS J. Solid State Sci. Technol., 4, P382, 10.1149/2.0191509jss

Zhang, 2017, Vertical GaN junction barrier schottky rectifiers by selective ion implantation, IEEE Electron Dev. Lett., 38, 1097, 10.1109/LED.2017.2720689

Feng, 2012, Space-modulated junction termination extension for ultrahigh-voltage pin diodes in 4H-SiC, IEEE Trans. Electron Dev., 59, 414, 10.1109/TED.2011.2175486

Ben-Yaacov, 2004, AlGaN/GaN current aperture vertical electron transistors with regrown channels, J. Appl. Phys., 95, 2073, 10.1063/1.1641520

Chowdhury, 2008, Enhancement and depletion mode AlGaN/GaN CAVET with Mg-ion-implanted GaN as current blocking layer, IEEE Electron Dev. Lett., 29, 543, 10.1109/LED.2008.922982

Jain, 2000, III-nitrides: growth, characterization, and properties, J. Appl. Phys., 87, 965, 10.1063/1.371971

Tadjer, 2016, Selective p-type doping of GaN: Si by Mg ion implantation and multicycle rapid thermal annealing, ECS J. Solid State Sci. Technol., 5, P124, 10.1149/2.0371602jss

Anderson, 2014, Activation of Mg implanted in GaN by multicycle rapid thermal annealing, Electron. Lett., 50, 197, 10.1049/el.2013.3214

Xing, 2003, Memory effect and redistribution of Mg into sequentially regrown GaN layer by metalorganic chemical vapor deposition, Jpn. J. Appl. Phys., 42, 50, 10.1143/JJAP.42.50

Chowdhury, 2012, CAVET on bulk GaN substrates achieved with MBE-regrown AlGaN/GaN layers to suppress dispersion, IEEE Electron Dev. Lett., 33, 41, 10.1109/LED.2011.2173456

Nie, 2014, 1.5-kV and 2.2-mΩcm2 vertical GaN transistors on bulk-GaN substrates, IEEE Electron Dev. Lett., 35, 939, 10.1109/LED.2014.2339197

Sun, 2017, High-performance GaN vertical fin power transistors on bulk GaN substrates, IEEE Electron Dev. Lett., 38, 509, 10.1109/LED.2017.2670925

Gupta, 2017, In situ oxide, gan interlayer-based vertical trench MOSFET (OG-FET) on bulk GaN substrates, IEEE Electron Dev. Lett., 38, 353, 10.1109/LED.2017.2649599

Li, 2016, 600V/1.7Ω normally-off GaN vertical trench metal-oxide-semiconductor field-effect transistor, IEEE Electron Dev. Lett., 37, 1466, 10.1109/LED.2016.2614515

Matocha, 2005, High-voltage normally off GaN MOSFETs on sapphire substrates, IEEE Trans. Electron Dev., 52, 6, 10.1109/TED.2004.841355

Kodama, 2008, GaN-based trench gate metal oxide semiconductor field-effect transistor fabricated with novel wet etching, Appl. Phys. Express, 1, 021104, 10.1143/APEX.1.021104

Zhang, 2017, Trench formation and corner rounding in vertical GaN power devices, Appl. Phys. Lett., 110, 193506, 10.1063/1.4983558

Itoh, 2006, Straight and smooth etching of GaN (1100) plane by combination of reactive ion etching and KOH wet etching techniques, Jpn. J. Appl. Phys., 45, 3988, 10.1143/JJAP.45.3988

Oka, 2014, Vertical GaN-based trench metal oxide semiconductor field-effect transistors on a free-standing GaN substrate with blocking voltage of 1.6kV, Appl. Phys. Express, 7, 021002, 10.7567/APEX.7.021002

Otake, 2008, Vertical GaN-based trench gate metal oxide semiconductor field-effect transistors on GaN bulk substrates, Appl. Phys. Express, 1, 011105, 10.1143/APEX.1.011105

Zhang, 2015, Origin and control of OFF-state leakage current in GaN-on-Si vertical diodes, IEEE Trans. Electron Dev., 62, 2155, 10.1109/TED.2015.2426711

Ruzzarin, 2017, Instability of dynamic-RON and threshold voltage in GaN-on-GaN vertical field-effect transistors, IEEE Trans. Electron Dev., 64, 3126, 10.1109/TED.2017.2716982

Dang, 2000, High voltage GaN schottky rectifiers, IEEE Trans. Electron Dev., 47, 692, 10.1109/16.830981

K. Nomoto, Z. Hu, B. Song, M. Zhu, M. Qi, R. Yan, V. Protasenko, E. Imhoff, J. Kuo, N. Kaneda, et al., GaN-on-GaN pn power diodes with 3.48kV and 0.95mΩcm2: a record high figure-of-merit of 12.8GW/cm2, in: Proceedings of the 2015 IEEE International on Electron Devices Meeting (IEDM), IEEE, 2015, pp. 9–7.

Aktas, 2015, Avalanche capability of vertical GaN pn junctions on bulk GaN substrates, IEEE Electron Dev. Lett., 36, 890, 10.1109/LED.2015.2456914

Saitoh, 2010, Extremely low on-resistance and high breakdown voltage observed in vertical GaN Schottky barrier diodes with high-mobility drift layers on low-dislocation-density GaN substrates, Appl. Phys. Express, 3, 081001, 10.1143/APEX.3.081001

Koehler, 2017, Vertical GaN junction barrier schottky diodes, ECS J. Solid State Sci. Technol., 6, Q10, 10.1149/2.0041701jss

Li, 2017, Design and realization of GaN trench junction-barrier-Schottky-diodes, IEEE Trans. Electron Dev., 64, 1635, 10.1109/TED.2017.2662702

Hayashida, 2017, Vertical GaN merged PiN Schottky diode with a breakdown voltage of 2kV, Appl. Phys. Express, 10, 061003, 10.7567/APEX.10.061003

Zhang, 2014, GaN-on-Si vertical Schottky and pn diodes, IEEE Electron Dev. Lett., 35, 618, 10.1109/LED.2014.2314637

Zou, 2016, Fully vertical GaN pin diodes using GaN-on-Si epilayers, IEEE Electron Dev. Lett., 37, 636, 10.1109/LED.2016.2548488

Mase, 2016, Novel fully vertical GaN p-n diode on Si substrate grown by metalorganic chemical vapor deposition, Appl. Phys. Express, 9, 111005, 10.7567/APEX.9.111005

Zhang, 2017, Fully-and quasi-vertical GaN-on-Si pin diodes: high performance and comprehensive comparison, IEEE Trans. Electron Dev., 64, 809, 10.1109/TED.2017.2647990

Zou, 2016, Breakdown ruggedness of quasi-vertical GaN-based pin diodes on Si substrates, IEEE Electron Dev. Lett., 37, 1158, 10.1109/LED.2016.2594821

Ohta, 2015, Vertical GaN pn junction diodes with high breakdown voltages over 4kV, IEEE Electron Dev. Lett., 36, 1180, 10.1109/LED.2015.2478907