Design and optimization of junction termination extension (JTE) for 4H–SiC high voltage Schottky diodes

Solid-State Electronics - Tập 49 - Trang 945-955 - 2005
Atul Mahajan1, B.J. Skromme1
1Department of Electrical Engineering and Center for Solid State Electronics Research, Arizona State University, Tempe, AZ 85287-5706, USA

Tài liệu tham khảo

Singh, 2002, SiC power Schottky and PiN diodes, IEEE Trans Electron Dev, 49, 665, 10.1109/16.992877 Singh, 2002, Large area, ultra-high voltage 4H–SiC p-i-n rectifiers, IEEE Trans Electron Dev, 49, 2308, 10.1109/TED.2002.805576 Saxena, 1999, High-voltage Ni- and Pt-SiC Schottky diodes utilizing metal field plate termination, IEEE Trans Electron Dev, 46, 456, 10.1109/16.748862 Tarplee, 2001, Design rules for field plate edge termination in SiC Schottky diodes, IEEE Trans Electron Dev, 48, 2659, 10.1109/16.974686 Sheridan, 2000, Design and fabrication of planar guard ring termination for high voltage SiC devices, Solid-State Electron, 44, 1367, 10.1016/S0038-1101(00)00081-2 Mihaila A, Udrea F, Godignon P, Trajkovic T, Brezeanu G, Rusu A, et al. Buried field rings—a novel edge termination method for 4H–SiC high voltage devices. In: Proc CAS Internat Semicond Conf, 2002. p. 245–8 Ueno K, Urushidani T, Hashimoto K, Seki Y. Al/Ti Schottky barrier diodes with the guard-ring termination for 6H–SiC. In: Proc Internat Sympos Power Semicond Devices and ICs, 1995. p. 107–11 Alok D, Baliga BJ. A planar, nearly ideal, SiC device edge termination. In: Proc Internat Sympos Power Semicond Devices and ICs, 1995. p. 96–100 Pérez, 2003, Optimisation of junction termination extension for the development of a 2000 V planar 4H–SiC diode, Diam Relat Mater, 12, 1231, 10.1016/S0925-9635(02)00283-2 Sheridan, 2001, Design of single and multiple zone junction termination extension structures for SiC power devices, Solid-State Electron, 45, 1659, 10.1016/S0038-1101(01)00052-1 Merrett, 2002, Fabrication of self-aligned junction termination extensions with applications to 4H SiC P-N diodes, J Electron Mater, 31, 635, 10.1007/s11664-002-0135-2 Alexandrov, 2003, Demonstration of high voltage (600–1300 V), high current (10–140 A), fast recovery 4H–SiC p-i-n/Schottky (MPS) barrier diodes, Solid-State Electron, 47, 263, 10.1016/S0038-1101(02)00205-8 Biserica O, Godignon P, Brezeanu G, Badila M, Rebollo J. Design of a reliable planar edge termination for SiC power devices. In: Proc CAS Internat Semicond Conf, 2001. p. 353–6 Jiang, 2000, 4H–SiC n+pp+ structure passivated with a SIPOS-SiO2 compound layer, Semicond Sci Technol, 15, 357, 10.1088/0268-1242/15/4/309 Brezeanu, 2001, Accurate modeling and parameter extraction for 6H–SiC Schottky barrier diodes (SBDs) with nearly ideal breakdown voltage, IEEE Trans Electron Dev, 48, 2148, 10.1109/16.944209 Sheridan DC, Niu G, Merrett JN, Cressler JD, Dufrene JB, Casady JB, et al. Comparison and optimization of edge termination techniques for SiC power devices. In: Proc Internat Sympos Power Semicond Devices and ICs, 2001. p. 191–4 Austin, 1996, Optimisation of PP− junction termination for new power devices, Solid-State Electron, 39, 593, 10.1016/0038-1101(95)00192-1 Temple, 1986, Junction termination extension for near-ideal breakdown voltage in p-n junctions, IEEE Trans Electron Dev, 33, 1601, 10.1109/T-ED.1986.22713 Tantraporn, 1987, Multiple-zone single-mask junction termination extension—A high-yield near-ideal breakdown technology, IEEE Trans Electron Dev, 34, 2200, 10.1109/T-ED.1987.23217 Zetterling CM, Dahlquist F, Lundburg N, Östling M. High voltage silicon carbide junction barrier rectifiers. In: Proc IEEE/Cornell Conf Adv Concepts High Speed Semicond Dev and Circuits, 1997. p. 256–62 Severt, 2000, Design of dual use, high efficiency, 4H–SiC Schottky and MPS diodes, Amer Inst Aeron Astron, 180 McGlothlin HM, Morisette DT, Cooper Jr JA, Melloch MR. 4 kV silicon carbide Schottky diodes for high frequency switching applications. In: Dig Device Research Conf, 1999. p. 42–3 Sugawara Y, Takayama D, Asano K, Singh R, Palmour J, Hayashi T. 12–19 kV 4H–SiC diodes with low power loss. In: Proc Internat Sympos Power Semicond Devices and ICs, 2001. p. 27–30 Zhao, 2003, Demonstration of the first 10 kV 4H–SiC Schottky barrier diodes, IEEE Electron Dev Lett, 24, 402, 10.1109/LED.2003.813370 Wang, 2004, Optimization of JTE edge terminations for 10 kV power devices in 4H–SiC, Mater Sci Forum, 457–460, 1257, 10.4028/www.scientific.net/MSF.457-460.1257 Planson, 1997, Periphery protection for silicon carbide devices: state of the art and simulation, Mater Sci Eng, B46, 210, 10.1016/S0921-5107(96)01983-6 Ortollond, 1998, Comparison between aluminium and boron-doped junction termination extensions for high voltage 6H–SiC planar bipolar diodes, Mater Sci Forum, 264–268, 1045, 10.4028/www.scientific.net/MSF.264-268.1045 Mitlehner, 1997, Analysis of static and dynamic behavior of 4H–SiC high voltage diodes, Automatika, 37, 15 DESSIS-ISE, 2-D Semiconductor Device Simulator, version 8.5. Integrated Systems Engineering, Zürich, 2002 Chante JP, Locatelli ML, Planson D, Ottaviani L, Morvan E, Isoird K, et al. Silicon carbide power devices. In: Proc CAS Internat Semicond Conf, 1998. p. 125–34 Roschke, 2001, Electron mobility models for 4H, 6H, and 3C SiC, IEEE Trans Electron Dev, 48, 1442, 10.1109/16.930664 Jarrendahl K, Davis RF. Material properties and characterization of SiC. In: Willardson RK, Weber ER, editors. Semiconductors and Semimetals, vol. 52, 1998. p. 1–20 Raghunathan, 1999, Temperature dependence of hole impact ionization coefficients in 4H and 6H–SiC, Solid-State Electron, 43, 199, 10.1016/S0038-1101(98)00248-2 Zhao, 2000, Monte Carlo simulation of 4H–SiC IMPATT diodes, Semicond Sci Technol, 15, 1093, 10.1088/0268-1242/15/11/314 Cooper, 2002, SiC power switching devices—the second revolution, Proc IEEE, 90, 956, 10.1109/JPROC.2002.1021561 Konstantinov, 1997, Ionization rates and critical fields in 4H silicon carbide, Appl Phys Lett, 71, 90, 10.1063/1.119478 Handy, 2000, Al, B, and Ga ion-implantation doping of SiC, J Electron Mater, 29, 1340, 10.1007/s11664-000-0135-z Yilmaz, 1991, Optimization and surface charge sensitivity of high voltage blocking structures with shallow junctions, IEEE Trans Electron Dev, 38, 1666, 10.1109/16.85165 Mingues C, Charitat G. Efficiency of junction termination techniques vs oxide trapped charges. In: Proc Internat Sympos Power Semicond Devices and ICs, 1997. p. 137–40 Trost JR, Ridley Sr RS, Khan MK, Grebs T, Evans H, Arthur S. The effect of charge in junction termination passivation dielectrics. In: Proc Internat Sympos Power Semicond Dev and ICs, 1999. p. 189–92 Chen, 1992, Theory of optimum design of reverse-biased p-n junctions using resistive field plates and variation lateral doping, Solid-State Electron, 35, 1365, 10.1016/0038-1101(92)90173-A Stengl, 1986, Variation of lateral doping as a field terminator for high voltage power devices, IEEE Trans Electron Dev, 33, 426, 10.1109/T-ED.1986.22505