Machinability investigations in cryogenic internal cooling turning Ti-6Al-2Zr-1Mo-1 V titanium alloy
Tóm tắt
Tài liệu tham khảo
Gupta MK, Sood PK, Sharma VS (2016) Optimization of machining parameters and cutting fluids during nano-fluid based minimum quantity lubrication turning of titanium alloy by using evolutionary techniques. J Clean Prod 135:1276–1288. https://doi.org/10.1016/j.jclepro.2016.06.184
Tahri C, Lequien P, Outeiro JC, Poulachon G (2017) CFD Simulation and optimize of LN2 flow inside channels used for cryogenic machining: application to milling of titanium alloy Ti-6Al-4V. Procedia CIRP 58:584–589. https://doi.org/10.1016/j.procir.2017.03.230
Khanna N, Agrawal C, Gupta MK, Song Q (2020) Tool wear and hole quality evaluation in cryogenic drilling of Inconel 718 superalloy. Tribol Int 143:106084. https://doi.org/10.1016/j.triboint.2019.106084
Biek M, Dumont F, Courbon C, Puavec F, Kopa J (2012) Cryogenic machining as an alternative turning process of normalized and hardened AISI 52100 bearing steel. J Mater Process Tech 212:2609–2618. https://doi.org/10.1016/j.jmatprotec.2012.07.022
Pu Z, Outeiro JC, Batista AC, Dillon OW Jr, Puleo DA, Jawahir IS (2012) Enhanced surface integrity of AZ31B Mg alloy by cryogenic machining towards improved functional performance of machined components. Int J Mach Tools Manuf 56:17–27. https://doi.org/10.1016/j.ijmachtools.2011.12.006
Schoop J, Ambrosy F, Zanger F, Schulze V, Jawahir IS, Balk TJ (2015) Increased surface integrity in porous tungsten from cryogenic machining with cermet cutting tool. Mater Manuf Processes. https://doi.org/10.1080/10426914.2015.1048467
Xia T, Kaynak Y, Arvin C, Jawahir IS (2015) Cryogenic cooling-induced process performance and surface integrity in drilling CFRP composite material. Int J Adv Manufact Technol. https://doi.org/10.1007/s00170-015-7284-y
Bermingham MJ, Kirsch J, Sun S, Palanisamy S, Dargusch MS (2011) New observations on tool life, cutting forces and chip morphology in cryogenic machining Ti-6Al-4V. Int J Mach Tools Manuf 51:500–511. https://doi.org/10.1016/j.ijmachtools.2011.02.009
Hao F, Xiao J, Feng Y, Wang Y, Tan C (2020) Tensile deformation behavior of a near-α titanium alloy Ti-6Al-2Zr-1Mo-1V under a wide temperature range. J Market Res. https://doi.org/10.1016/j.jmrt.2020.01.016
Chen R, Tan C, You Z, Li Z, Zhang S, Nie Z, Yu X, Zhao X (2019) Effect of α phase on high-strain rate deformation behavior of laser melting deposited Ti-6.5Al-1Mo-1V-2Zr titanium alloy. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2019.01.060
Gao P, Zhan M, Fan X, Lei Z, Cai Y (2017) Hot deformation behavior and microstructure evolution of TA15 titanium alloy with nonuniform microstructure. Mater Sci Eng A 689:243–251. https://doi.org/10.1016/j.msea.2017.02.054
Liu G, Wang K, He B, Huang M, Yuan S (2015) Mechanism of saturated flow stress during hot tensile deformation of a TA15 Ti alloy. Mater Des 86:146–151. https://doi.org/10.1016/j.matdes.2015.07.100
Hong SY, Ding Y (2001) Cooling approaches and cutting temperatures in cryogenic machining of Ti-6Al-4V. Int J Mach Tools Manuf 41:1417–1437. https://doi.org/10.1016/S0890-6955(01)00026-8
Gan Y, Wang Y, Liu K, Wang S, Yu Q, Che C, Liu H (2021) The development and experimental research of a cryogenic internal cooling turning tool. J Clean Prod. https://doi.org/10.1016/j.jclepro.2021.128787
Albertson ML, Dai YB, Jensen RA, Rouse H (1950) Diffusion of submerged jets. Transactions ASCE 115:639–664. https://doi.org/10.1061/TACEAT.0006302