CFD and experimental analysis of the coolant flow in cryogenic milling

Ehsan Tahmasebi1, Paolo Albertelli2, Tommaso Lucchini3, Michele Monno2, Valerio Mussi4
1University of British Columbia, Okanagan Campus, Canada
2Politecnico di Milano, Mechanical Engineering Department, Via la Masa 1, 20156, Milan, Italy
3Politecnico di Milano, Energy Engineering Department, Via Lambruschini 4, 20156, Milan, Italy
4Consorzio MUSP, Strada Torre della Razza, 29122, Piacenza, Italy

Tài liệu tham khảo

Stephenson, 2016 Krämer, 2014, Influence of the lubricoolant strategy on thermo-mechanical tool load, CIRP J. Manuf. Sci. Technol., 7, 40, 10.1016/j.cirpj.2013.09.001 Niederwestberg, 2014, Simulation of thermal and mechanical workpiece load, CIRP J. Manuf. Sci. Technol., 7, 315, 10.1016/j.cirpj.2014.07.004 Yildiz, 2008, A review of cryogenic cooling in machining processes, Int. J. Mach. Tool Manuf., 48, 947, 10.1016/j.ijmachtools.2008.01.008 Strano, 2013, Experimental evaluation of innovative tools for Ti-6Al-4V turning, 1941 Gupta, 2017, Sustainable machining of titanium alloys: a critical review, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 231, 2543, 10.1177/0954405416634278 Krishnamurthy, 2017, Increasing efficiency of Ti-alloy machining by cryogenic cooling and using ethanol in MRF, CIRP J. Manuf. Sci. Technol., 18, 159, 10.1016/j.cirpj.2017.01.001 Jayal, 2010, Sustainable manufacturing: modeling and optimization challenges at the product, process and system levels, CIRP J. Manuf. Sci. Technol., 2, 144, 10.1016/j.cirpj.2010.03.006 Pusavec, 2010, Transitioning to sustainable production – Part I: application on machining technologies, J. Clean. Prod., 18, 174, 10.1016/j.jclepro.2009.08.010 Isakson, 2018, Effect of cryogenic cooling and tool wear on surface integrity of turned Ti-6Al-4V, Procedia CIRP, 71, 254, 10.1016/j.procir.2018.05.061 Sadik, 2016, Influence of coolant flow rate on tool life and wear development in cryogenic and wet milling of Ti-6Al-4V, Procedia CIRP, 46, 91, 10.1016/j.procir.2016.02.014 Hong, 2001, New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V, Int. J. Mach. Tool Manuf., 41, 2245, 10.1016/S0890-6955(01)00041-4 Mia, 2017, Influence of single and dual cryogenic jets on machinability characteristics in turning of Ti-6Al-4V, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 0, 1 El-Tayeb, 2010, Wear characteristics of titanium alloy Ti54 for cryogenic sliding applications, Tribol. Int., 43, 2345, 10.1016/j.triboint.2010.08.012 Pereira, 2017, Internal cryolubrication approach for Inconel 718 milling, Procedia Manuf., 13, 89, 10.1016/j.promfg.2017.09.013 Pereira, 2016, Cryogenic and minimum quantity lubrication for an eco-efficiency turning of AISI 304, J. Clean. Prod., 139, 440, 10.1016/j.jclepro.2016.08.030 Pereira, 2016, A cryo lubri-coolant approach for finish milling of aeronautical hard-to-cut materials, Int. J. Mechatron. Manuf. Syst., 9, 370 Nalbant, 2011, Effect of cryogenic cooling in milling process of AISI 304 stainless steel, Trans. Nonferrous Metals Soc. China, 21, 72, 10.1016/S1003-6326(11)60680-8 Biermann, 2010, Improvement of workpiece quality in face milling of aluminum alloys, J. Mater. Process. Technol., 210, 1968, 10.1016/j.jmatprotec.2010.07.010 Shokrani, 2012, Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids, Int. J. Mach. Tool Manuf., 57, 83, 10.1016/j.ijmachtools.2012.02.002 Shokrani, 2013, State-of-the-art cryogenic machining and processing, Int. J. Comput. Integr. Manuf., 26, 616, 10.1080/0951192X.2012.749531 Shokrani, 2018, Energy conscious cryogenic machining of Ti-6Al-4V titanium alloy, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 232, 1690, 10.1177/0954405416668923 Shokrani, 2016, Investigation of the effects of cryogenic machining on surface integrity in CNC end milling of Ti–6Al–4V titanium alloy, J. Manuf. Process., 21, 172, 10.1016/j.jmapro.2015.12.002 Strano, 2013, Comparison of Ti6Al4V machining forces and tool life for cryogenic versus conventional cooling, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 227, 1403, 10.1177/0954405413486635 Tirelli, 2015, Economical comparison of cryogenic vs . Traditional turning of Ti-6Al- 4V : a case study, 1204 Davoudinejad, 2015, FE simulation and validation of chip formation and cutting forces in dry and cryogenic cutting of Ti – 6Al – 4V, Procedia Manuf., 1 Pusavec, 2016, Analysis of the influence of nitrogen phase and surface heat transfer coefficient on cryogenic machining performance, J. Mater. Process. Technol., 233, 19, 10.1016/j.jmatprotec.2016.02.003 Fallenstein, 2014, CFD based investigation on internal cooling of twist drills, Procedia CIRP, 14, 293, 10.1016/j.procir.2014.03.112 Woon, 2017, A computational fluid dynamics (CFD) model for effective coolant application in deep hole gundrilling, Int. J. Mach. Tool Manuf., 113, 10, 10.1016/j.ijmachtools.2016.11.008 Oezkaya, 2016, Experimental studies and CFD simulation of the internal cooling conditions when drilling Inconel 718, Int. J. Mach. Tool Manuf., 108, 52, 10.1016/j.ijmachtools.2016.06.003 Najiha, 2014, A computational fluid dynamics analysis of single and three nozzles minimum quantity lubricant flow for milling, Int. J. Automot. Mech. Eng., 10, 1891, 10.15282/ijame.10.2014.6.0157 Tahri, 2017, CFD simulation and optimize of LN2 flow inside channels used for cryogenic machining: application to milling of titanium alloy Ti-6Al-4V, Procedia CIRP, 58, 584, 10.1016/j.procir.2017.03.230 Barron, 2016 Chandra, 2016, vol. 116, 999 Qiu, 2015, International journal of heat and mass transfer recent developments of jet impingement nucleate boiling, Int. J. Heat Mass Transf., 89, 42, 10.1016/j.ijheatmasstransfer.2015.05.025 Starodubtseva, 2014 Vader, 2018 Timmerhaus, 1989 Carey, 2007 Mamoru, 2011 Hewitt, 1970 Rozzi, 2009 Rozzi, 2010 Franc, 2010 Tahmasebi, 2018, Recent advances in simulation of flow in cryogenic cooling for hard-to-cut materials Sun, 2018, Cavitation in diesel fuel injector nozzles and its influence on atomization and spray, Chem. Eng. Technol., 6 Tahmasebi, 2017, An investigation of the validity of a homogeneous equilibrium model for different diesel injector nozzles and flow conditions, Energy Convers. Manag., 154, 46, 10.1016/j.enconman.2017.10.049 Tahmasebi, 2015, Numerical simulation of diesel injector internal flow field, Energy Procedia, 82, 51, 10.1016/j.egypro.2015.11.882 Salvador, 2013, Study of the influence of the needle lift on the internal flow and cavitation phenomenon in diesel injector nozzles by CFD using RANS methods, Energy Convers. Manag., 66, 246, 10.1016/j.enconman.2012.10.011 Schmidt, 1999, A Fully compressible, two-dimensional model of small, high-speed, cavitating nozzels, Sprays, 9, 255, 10.1615/AtomizSpr.v9.i3.20 Habchi, 2008, Multidimensional simulation of cavitating flows in diesel injectors by a homegeneous mixture modeling approach, Sprays., 18, 129, 10.1615/AtomizSpr.v18.i2.20 Tahmasebi, 2016 Deshpande, 2012, Evaluating the performance of the two-phase flow solver interFoam, Comput. Sci. Discov., 5, 1, 10.1088/1749-4699/5/1/014016 Jasak, 2007, OpenFOAM: a C++ library for complex physics simulations, 1 Menter, 2003, Ten years of industrial experience with the SST turbulence model, Turbul. Heat Mass. Transfe., 4, 625 Lemmon, 2013, NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP Rotella, 2014, Finite element modeling of microstructural changes in dry and cryogenic cutting of Ti6Al4V alloy, CIRP Ann., 63, 69, 10.1016/j.cirp.2014.03.074 Imbrogno, 2017, Machining simulation of Ti6Al4V under dry and cryogenic conditions, Procedia CIRP, 58, 475, 10.1016/j.procir.2017.03.263 Hong, 2001, Cooling approaches and cutting temperatures in cryogenic machining of Ti-6Al-4V, Int. J. Mach. Tool Manuf., 41, 1417, 10.1016/S0890-6955(01)00026-8 Altintas, 2012 Montgomery, 2001 Jawahir, 2016, Cryogenic manufacturing processes, CIRP Ann., 65, 713, 10.1016/j.cirp.2016.06.007 Sharma, 2009, Cooling techniques for improved productivity in turning, Int. J. Mach. Tool Manuf., 49, 435, 10.1016/j.ijmachtools.2008.12.010