CFD and experimental analysis of the coolant flow in cryogenic milling
Tài liệu tham khảo
Stephenson, 2016
Krämer, 2014, Influence of the lubricoolant strategy on thermo-mechanical tool load, CIRP J. Manuf. Sci. Technol., 7, 40, 10.1016/j.cirpj.2013.09.001
Niederwestberg, 2014, Simulation of thermal and mechanical workpiece load, CIRP J. Manuf. Sci. Technol., 7, 315, 10.1016/j.cirpj.2014.07.004
Yildiz, 2008, A review of cryogenic cooling in machining processes, Int. J. Mach. Tool Manuf., 48, 947, 10.1016/j.ijmachtools.2008.01.008
Strano, 2013, Experimental evaluation of innovative tools for Ti-6Al-4V turning, 1941
Gupta, 2017, Sustainable machining of titanium alloys: a critical review, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 231, 2543, 10.1177/0954405416634278
Krishnamurthy, 2017, Increasing efficiency of Ti-alloy machining by cryogenic cooling and using ethanol in MRF, CIRP J. Manuf. Sci. Technol., 18, 159, 10.1016/j.cirpj.2017.01.001
Jayal, 2010, Sustainable manufacturing: modeling and optimization challenges at the product, process and system levels, CIRP J. Manuf. Sci. Technol., 2, 144, 10.1016/j.cirpj.2010.03.006
Pusavec, 2010, Transitioning to sustainable production – Part I: application on machining technologies, J. Clean. Prod., 18, 174, 10.1016/j.jclepro.2009.08.010
Isakson, 2018, Effect of cryogenic cooling and tool wear on surface integrity of turned Ti-6Al-4V, Procedia CIRP, 71, 254, 10.1016/j.procir.2018.05.061
Sadik, 2016, Influence of coolant flow rate on tool life and wear development in cryogenic and wet milling of Ti-6Al-4V, Procedia CIRP, 46, 91, 10.1016/j.procir.2016.02.014
Hong, 2001, New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V, Int. J. Mach. Tool Manuf., 41, 2245, 10.1016/S0890-6955(01)00041-4
Mia, 2017, Influence of single and dual cryogenic jets on machinability characteristics in turning of Ti-6Al-4V, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 0, 1
El-Tayeb, 2010, Wear characteristics of titanium alloy Ti54 for cryogenic sliding applications, Tribol. Int., 43, 2345, 10.1016/j.triboint.2010.08.012
Pereira, 2017, Internal cryolubrication approach for Inconel 718 milling, Procedia Manuf., 13, 89, 10.1016/j.promfg.2017.09.013
Pereira, 2016, Cryogenic and minimum quantity lubrication for an eco-efficiency turning of AISI 304, J. Clean. Prod., 139, 440, 10.1016/j.jclepro.2016.08.030
Pereira, 2016, A cryo lubri-coolant approach for finish milling of aeronautical hard-to-cut materials, Int. J. Mechatron. Manuf. Syst., 9, 370
Nalbant, 2011, Effect of cryogenic cooling in milling process of AISI 304 stainless steel, Trans. Nonferrous Metals Soc. China, 21, 72, 10.1016/S1003-6326(11)60680-8
Biermann, 2010, Improvement of workpiece quality in face milling of aluminum alloys, J. Mater. Process. Technol., 210, 1968, 10.1016/j.jmatprotec.2010.07.010
Shokrani, 2012, Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids, Int. J. Mach. Tool Manuf., 57, 83, 10.1016/j.ijmachtools.2012.02.002
Shokrani, 2013, State-of-the-art cryogenic machining and processing, Int. J. Comput. Integr. Manuf., 26, 616, 10.1080/0951192X.2012.749531
Shokrani, 2018, Energy conscious cryogenic machining of Ti-6Al-4V titanium alloy, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 232, 1690, 10.1177/0954405416668923
Shokrani, 2016, Investigation of the effects of cryogenic machining on surface integrity in CNC end milling of Ti–6Al–4V titanium alloy, J. Manuf. Process., 21, 172, 10.1016/j.jmapro.2015.12.002
Strano, 2013, Comparison of Ti6Al4V machining forces and tool life for cryogenic versus conventional cooling, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 227, 1403, 10.1177/0954405413486635
Tirelli, 2015, Economical comparison of cryogenic vs . Traditional turning of Ti-6Al- 4V : a case study, 1204
Davoudinejad, 2015, FE simulation and validation of chip formation and cutting forces in dry and cryogenic cutting of Ti – 6Al – 4V, Procedia Manuf., 1
Pusavec, 2016, Analysis of the influence of nitrogen phase and surface heat transfer coefficient on cryogenic machining performance, J. Mater. Process. Technol., 233, 19, 10.1016/j.jmatprotec.2016.02.003
Fallenstein, 2014, CFD based investigation on internal cooling of twist drills, Procedia CIRP, 14, 293, 10.1016/j.procir.2014.03.112
Woon, 2017, A computational fluid dynamics (CFD) model for effective coolant application in deep hole gundrilling, Int. J. Mach. Tool Manuf., 113, 10, 10.1016/j.ijmachtools.2016.11.008
Oezkaya, 2016, Experimental studies and CFD simulation of the internal cooling conditions when drilling Inconel 718, Int. J. Mach. Tool Manuf., 108, 52, 10.1016/j.ijmachtools.2016.06.003
Najiha, 2014, A computational fluid dynamics analysis of single and three nozzles minimum quantity lubricant flow for milling, Int. J. Automot. Mech. Eng., 10, 1891, 10.15282/ijame.10.2014.6.0157
Tahri, 2017, CFD simulation and optimize of LN2 flow inside channels used for cryogenic machining: application to milling of titanium alloy Ti-6Al-4V, Procedia CIRP, 58, 584, 10.1016/j.procir.2017.03.230
Barron, 2016
Chandra, 2016, vol. 116, 999
Qiu, 2015, International journal of heat and mass transfer recent developments of jet impingement nucleate boiling, Int. J. Heat Mass Transf., 89, 42, 10.1016/j.ijheatmasstransfer.2015.05.025
Starodubtseva, 2014
Vader, 2018
Timmerhaus, 1989
Carey, 2007
Mamoru, 2011
Hewitt, 1970
Rozzi, 2009
Rozzi, 2010
Franc, 2010
Tahmasebi, 2018, Recent advances in simulation of flow in cryogenic cooling for hard-to-cut materials
Sun, 2018, Cavitation in diesel fuel injector nozzles and its influence on atomization and spray, Chem. Eng. Technol., 6
Tahmasebi, 2017, An investigation of the validity of a homogeneous equilibrium model for different diesel injector nozzles and flow conditions, Energy Convers. Manag., 154, 46, 10.1016/j.enconman.2017.10.049
Tahmasebi, 2015, Numerical simulation of diesel injector internal flow field, Energy Procedia, 82, 51, 10.1016/j.egypro.2015.11.882
Salvador, 2013, Study of the influence of the needle lift on the internal flow and cavitation phenomenon in diesel injector nozzles by CFD using RANS methods, Energy Convers. Manag., 66, 246, 10.1016/j.enconman.2012.10.011
Schmidt, 1999, A Fully compressible, two-dimensional model of small, high-speed, cavitating nozzels, Sprays, 9, 255, 10.1615/AtomizSpr.v9.i3.20
Habchi, 2008, Multidimensional simulation of cavitating flows in diesel injectors by a homegeneous mixture modeling approach, Sprays., 18, 129, 10.1615/AtomizSpr.v18.i2.20
Tahmasebi, 2016
Deshpande, 2012, Evaluating the performance of the two-phase flow solver interFoam, Comput. Sci. Discov., 5, 1, 10.1088/1749-4699/5/1/014016
Jasak, 2007, OpenFOAM: a C++ library for complex physics simulations, 1
Menter, 2003, Ten years of industrial experience with the SST turbulence model, Turbul. Heat Mass. Transfe., 4, 625
Lemmon, 2013, NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP
Rotella, 2014, Finite element modeling of microstructural changes in dry and cryogenic cutting of Ti6Al4V alloy, CIRP Ann., 63, 69, 10.1016/j.cirp.2014.03.074
Imbrogno, 2017, Machining simulation of Ti6Al4V under dry and cryogenic conditions, Procedia CIRP, 58, 475, 10.1016/j.procir.2017.03.263
Hong, 2001, Cooling approaches and cutting temperatures in cryogenic machining of Ti-6Al-4V, Int. J. Mach. Tool Manuf., 41, 1417, 10.1016/S0890-6955(01)00026-8
Altintas, 2012
Montgomery, 2001
Jawahir, 2016, Cryogenic manufacturing processes, CIRP Ann., 65, 713, 10.1016/j.cirp.2016.06.007
Sharma, 2009, Cooling techniques for improved productivity in turning, Int. J. Mach. Tool Manuf., 49, 435, 10.1016/j.ijmachtools.2008.12.010