High-performance lithium sulfur batteries enabled by a synergy between sulfur and carbon nanotubes

Energy Storage Materials - Tập 16 - Trang 194-202 - 2019
Amir Abdul Razzaq1,2, Yuanzhou Yao1,2, Rahim Shah1,2, Pengwei Qi1,2, Lixiao Miao3, Muzi Chen4, Xiaohui Zhao1,2, Yang Peng1,2, Zhao Deng1,2
1Soochow Institute for Energy and Materials Innovations, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China
2Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
3Sound Group Institute of New Energy, Beijing 101102, China
4Analysis and Testing Center, Soochow University, Suzhou, 215123, China

Tài liệu tham khảo

Seh, 2016, Designing high-energy lithium–sulfur batteries, Chem. Soc. Rev., 45, 5605, 10.1039/C5CS00410A

Pang, 2016, Long-life and high-areal-capacity Li–S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption, ACS Nano, 10, 4111, 10.1021/acsnano.5b07347

Kang, 2016, A review of recent developments in rechargeable lithium–sulfur batteries, Nanoscale, 8, 16541, 10.1039/C6NR04923K

Xu, 2014, High performance lithium–sulfur batteries: advances and challenges, J. Mater. Chem. A, 2, 12662, 10.1039/C4TA02097A

Liang, 2015, A highly efficient polysulfide mediator for lithium–sulfur batteries, Nat. Commun., 6, 5682, 10.1038/ncomms6682

Helen, 2015, Single step transformation of sulphur to Li2S2/Li2S in Li-S batteries ‎, Sci. Rep., 5, 12146, 10.1038/srep12146

Li, 2014, Sulfur-infiltrated three-dimensional graphene-like material with hierarchical pores for highly stable lithium–sulfur batteries, J. Mater. Chem. A, 2, 4528, 10.1039/C3TA15069K

Ji, 2009, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries, Nat. Mater., 8, 500, 10.1038/nmat2460

Zhou, 2013, Yolk–shell structure of polyaniline-coated sulfur for lithium–sulfur batteries, J. Am. Chem. Soc., 135, 16736, 10.1021/ja409508q

Zhang, 2014, Novel hierarchically porous carbon materials obtained from natural biopolymer as host matrixes for lithium–sulfur battery applications, ACS Appl. Mater. Interfaces, 6, 13174, 10.1021/am503069j

Guo, 2011, Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries, Nano Lett., 11, 4288, 10.1021/nl202297p

Li, 2017, Sulfur vapor-infiltrated 3D carbon nanotube foam for binder-free high areal capacity lithium–sulfur battery composite cathodes, ACS Nano, 11, 4877, 10.1021/acsnano.7b01437

Xu, 2015, Confined sulfur in microporous carbon renders superior cycling stability in Li/S batteries, Adv. Funct. Mater., 25, 4312, 10.1002/adfm.201500983

Kang, 2018, Sulfur-embedded porous carbon nanofiber composites for high stability lithium-sulfur batteries, Chem. Eng. J., 333, 185, 10.1016/j.cej.2017.09.134

Feng, 2017, One-step synthesis of carbon nanosheet-decorated carbon nanofibers as a 3D interconnected porous carbon scaffold for lithium–sulfur batteries, J. Mater. Chem. A, 5, 23737, 10.1039/C7TA06998G

Zhao, 2014, Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries, Nat. Commun., 5, 3410, 10.1038/ncomms4410

Pei, 2017, Self-supporting sulfur cathodes enabled by two-dimensional carbon yolk-shell nanosheets for high-energy-density lithium-sulfur batteries, Nat. Commun., 8, 482, 10.1038/s41467-017-00575-8

Zheng, 2006, Novel nanosized adsorbing sulfur composite cathode materials for the advanced secondary lithium batteries, Electrochim. Acta, 51, 1330, 10.1016/j.electacta.2005.06.021

Wang, 2015, Sulfur‐based composite cathode materials for high‐energy rechargeable lithium batteries, Adv. Mater., 27, 569, 10.1002/adma.201402569

Zhang, 2013, Sulfurized carbon: a class of cathode materials for high performance lithium/sulfur batteries, Front. Energy Res., 1, 10, 10.3389/fenrg.2013.00010

Wang, 2002, A novel conductive polymer–sulfur composite cathode material for rechargeable lithium batteries, Adv. Mater., 14, 963, 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P

Wei, 2015, Metal–sulfur battery cathodes based on PAN–sulfur composites, J. Am. Chem. Soc., 137, 12143, 10.1021/jacs.5b08113

Wang, 2003, Sulfur composite cathode materials for rechargeable lithium batteries, Adv. Funct. Mater., 13, 487, 10.1002/adfm.200304284

Yin, 2011, A novel pyrolyzed polyacrylonitrile-sulfur@ MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries, J. Mater. Chem., 21, 6807, 10.1039/c1jm00047k

Zhou, 2013, Amylopectin wrapped graphene oxide/sulfur for improved cyclability of lithium–sulfur battery, ACS Nano, 7, 8801, 10.1021/nn403237b

Sohn, 2016, Porous spherical polyacrylonitrile-carbon nanocomposite with high loading of sulfur for lithium–sulfur batteries, J. Power Sources, 302, 70, 10.1016/j.jpowsour.2015.10.013

Zhang, 2014, Understanding of sulfurized polyacrylonitrile for superior performance lithium/sulfur battery, Energies, 7, 4588, 10.3390/en7074588

Xu, 2016, Enhanced performance of a lithium–sulfur battery using a carbonate‐based electrolyte, Angew. Chem. Int. Ed., 128, 10528, 10.1002/ange.201605931

Zheng, 2014, High performance C/S composite cathodes with conventional carbonate-based electrolytes in Li-S battery, Sci. Rep., 4, 4842, 10.1038/srep04842

Zhang, 2017, Microporous carbon polyhedrons encapsulated polyacrylonitrile nanofibers as sulfur immobilizer for lithium–sulfur battery, ACS Appl. Mater. Interfaces, 9, 12436, 10.1021/acsami.7b00389

Li, 2015, Pie-like electrode design for high-energy density lithium–sulfur batteries, Nat. Commun., 6, 8850, 10.1038/ncomms9850

Yin, 2012, Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li–S batteries, Energy Environ. Sci., 5, 6966, 10.1039/c2ee03495f

Chen, 2017, Facile fabrication of foldable electrospun polyacrylonitrile-based carbon nanofibers for flexible lithium-ion batteries, J. Mater. Chem. A, 5, 12914, 10.1039/C7TA02528A

Guo, 2015, A conductive selenized polyacrylonitrile cathode material for re-chargeable lithium batteries with long cycle life, J. Mater. Chem. A, 3, 19815, 10.1039/C5TA04510J

Ye, 2015, Sulfur/carbon nanocomposite-filled polyacrylonitrile nanofibers as a long life and high capacity cathode for lithium–sulfur batteries, J. Mater. Chem. A, 3, 7406, 10.1039/C4TA06976E

Hu, 2017, In situ wrapping of the cathode material in lithium-sulfur batteries, Nat. Commun., 8, 479, 10.1038/s41467-017-00656-8

Takahagi, 1986, XPS studies on the chemical structure of the stabilized polyacrylonitrile fiber in the carbon fiber production process, J. Polym. Sci. Part A: Polym. Chem., 24, 3101, 10.1002/pola.1986.080241134

Frey, 2017, Easily accessible, textile fiber-based sulfurized poly (acrylonitrile) as Li/S cathode material: correlating electrochemical performance with morphology and structure, ACS Energy Lett., 2, 595, 10.1021/acsenergylett.7b00009

Zhang, 2013, Ternary sulfur/polyacrylonitrile/Mg0.6Ni0.4O composite cathodes for high performance lithium/sulfur batteries, J. Mater. Chem. A, 1, 295, 10.1039/C2TA00105E

Zhang, 2013, Effect of graphene on sulfur/polyacrylonitrile nanocomposite cathode in high performance lithium/sulfur batteries, J. Electrochem. Soc., 160, A1194, 10.1149/2.068308jes

Xu, 2016, Greatly suppressed shuttle effect for improved lithium sulfur battery performance through short chain intermediates, Nano Lett., 17, 538, 10.1021/acs.nanolett.6b04610

Fu, 2016, Solid state lithiation–delithiation of sulphur in sub-nano confinement: a new concept for designing lithium–sulphur batteries, Chem. Sci., 7, 1224, 10.1039/C5SC03419A

Yang, 2015, Electrochemical (de) lithiation of 1D sulfur chains in Li–S batteries: a model system study, J. Am. Chem. Soc., 137, 2215, 10.1021/ja513009v

Fu, 2016, Electrochemical lithiation of covalently bonded sulfur in vulcanized polyisoprene, ACS Energy Lett., 1, 115, 10.1021/acsenergylett.6b00073

J. Chastain, R.C. King, J. Moulder, Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data, Physical Electronics Division, Perkin-Elmer Corporation Eden Prairie, Minnesota, 1992.

Park, 2015, Trapping lithium polysulfides of a Li–S battery by forming lithium bonds in a polymer matrix, Energy Environ. Sci., 8, 2389, 10.1039/C5EE01809A

Seh, 2014, Facile synthesis of Li2S–polypyrrole composite structures for high-performance Li2S cathodes, Energy Environ. Sci., 7, 672, 10.1039/c3ee43395a