High-performance lithium sulfur batteries enabled by a synergy between sulfur and carbon nanotubes
Tài liệu tham khảo
Seh, 2016, Designing high-energy lithium–sulfur batteries, Chem. Soc. Rev., 45, 5605, 10.1039/C5CS00410A
Pang, 2016, Long-life and high-areal-capacity Li–S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption, ACS Nano, 10, 4111, 10.1021/acsnano.5b07347
Kang, 2016, A review of recent developments in rechargeable lithium–sulfur batteries, Nanoscale, 8, 16541, 10.1039/C6NR04923K
Xu, 2014, High performance lithium–sulfur batteries: advances and challenges, J. Mater. Chem. A, 2, 12662, 10.1039/C4TA02097A
Liang, 2015, A highly efficient polysulfide mediator for lithium–sulfur batteries, Nat. Commun., 6, 5682, 10.1038/ncomms6682
Helen, 2015, Single step transformation of sulphur to Li2S2/Li2S in Li-S batteries , Sci. Rep., 5, 12146, 10.1038/srep12146
Li, 2014, Sulfur-infiltrated three-dimensional graphene-like material with hierarchical pores for highly stable lithium–sulfur batteries, J. Mater. Chem. A, 2, 4528, 10.1039/C3TA15069K
Ji, 2009, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries, Nat. Mater., 8, 500, 10.1038/nmat2460
Zhou, 2013, Yolk–shell structure of polyaniline-coated sulfur for lithium–sulfur batteries, J. Am. Chem. Soc., 135, 16736, 10.1021/ja409508q
Zhang, 2014, Novel hierarchically porous carbon materials obtained from natural biopolymer as host matrixes for lithium–sulfur battery applications, ACS Appl. Mater. Interfaces, 6, 13174, 10.1021/am503069j
Guo, 2011, Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries, Nano Lett., 11, 4288, 10.1021/nl202297p
Li, 2017, Sulfur vapor-infiltrated 3D carbon nanotube foam for binder-free high areal capacity lithium–sulfur battery composite cathodes, ACS Nano, 11, 4877, 10.1021/acsnano.7b01437
Xu, 2015, Confined sulfur in microporous carbon renders superior cycling stability in Li/S batteries, Adv. Funct. Mater., 25, 4312, 10.1002/adfm.201500983
Kang, 2018, Sulfur-embedded porous carbon nanofiber composites for high stability lithium-sulfur batteries, Chem. Eng. J., 333, 185, 10.1016/j.cej.2017.09.134
Feng, 2017, One-step synthesis of carbon nanosheet-decorated carbon nanofibers as a 3D interconnected porous carbon scaffold for lithium–sulfur batteries, J. Mater. Chem. A, 5, 23737, 10.1039/C7TA06998G
Zhao, 2014, Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries, Nat. Commun., 5, 3410, 10.1038/ncomms4410
Pei, 2017, Self-supporting sulfur cathodes enabled by two-dimensional carbon yolk-shell nanosheets for high-energy-density lithium-sulfur batteries, Nat. Commun., 8, 482, 10.1038/s41467-017-00575-8
Zheng, 2006, Novel nanosized adsorbing sulfur composite cathode materials for the advanced secondary lithium batteries, Electrochim. Acta, 51, 1330, 10.1016/j.electacta.2005.06.021
Wang, 2015, Sulfur‐based composite cathode materials for high‐energy rechargeable lithium batteries, Adv. Mater., 27, 569, 10.1002/adma.201402569
Zhang, 2013, Sulfurized carbon: a class of cathode materials for high performance lithium/sulfur batteries, Front. Energy Res., 1, 10, 10.3389/fenrg.2013.00010
Wang, 2002, A novel conductive polymer–sulfur composite cathode material for rechargeable lithium batteries, Adv. Mater., 14, 963, 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P
Wei, 2015, Metal–sulfur battery cathodes based on PAN–sulfur composites, J. Am. Chem. Soc., 137, 12143, 10.1021/jacs.5b08113
Wang, 2003, Sulfur composite cathode materials for rechargeable lithium batteries, Adv. Funct. Mater., 13, 487, 10.1002/adfm.200304284
Yin, 2011, A novel pyrolyzed polyacrylonitrile-sulfur@ MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries, J. Mater. Chem., 21, 6807, 10.1039/c1jm00047k
Zhou, 2013, Amylopectin wrapped graphene oxide/sulfur for improved cyclability of lithium–sulfur battery, ACS Nano, 7, 8801, 10.1021/nn403237b
Sohn, 2016, Porous spherical polyacrylonitrile-carbon nanocomposite with high loading of sulfur for lithium–sulfur batteries, J. Power Sources, 302, 70, 10.1016/j.jpowsour.2015.10.013
Zhang, 2014, Understanding of sulfurized polyacrylonitrile for superior performance lithium/sulfur battery, Energies, 7, 4588, 10.3390/en7074588
Xu, 2016, Enhanced performance of a lithium–sulfur battery using a carbonate‐based electrolyte, Angew. Chem. Int. Ed., 128, 10528, 10.1002/ange.201605931
Zheng, 2014, High performance C/S composite cathodes with conventional carbonate-based electrolytes in Li-S battery, Sci. Rep., 4, 4842, 10.1038/srep04842
Zhang, 2017, Microporous carbon polyhedrons encapsulated polyacrylonitrile nanofibers as sulfur immobilizer for lithium–sulfur battery, ACS Appl. Mater. Interfaces, 9, 12436, 10.1021/acsami.7b00389
Li, 2015, Pie-like electrode design for high-energy density lithium–sulfur batteries, Nat. Commun., 6, 8850, 10.1038/ncomms9850
Yin, 2012, Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li–S batteries, Energy Environ. Sci., 5, 6966, 10.1039/c2ee03495f
Chen, 2017, Facile fabrication of foldable electrospun polyacrylonitrile-based carbon nanofibers for flexible lithium-ion batteries, J. Mater. Chem. A, 5, 12914, 10.1039/C7TA02528A
Guo, 2015, A conductive selenized polyacrylonitrile cathode material for re-chargeable lithium batteries with long cycle life, J. Mater. Chem. A, 3, 19815, 10.1039/C5TA04510J
Ye, 2015, Sulfur/carbon nanocomposite-filled polyacrylonitrile nanofibers as a long life and high capacity cathode for lithium–sulfur batteries, J. Mater. Chem. A, 3, 7406, 10.1039/C4TA06976E
Hu, 2017, In situ wrapping of the cathode material in lithium-sulfur batteries, Nat. Commun., 8, 479, 10.1038/s41467-017-00656-8
Takahagi, 1986, XPS studies on the chemical structure of the stabilized polyacrylonitrile fiber in the carbon fiber production process, J. Polym. Sci. Part A: Polym. Chem., 24, 3101, 10.1002/pola.1986.080241134
Frey, 2017, Easily accessible, textile fiber-based sulfurized poly (acrylonitrile) as Li/S cathode material: correlating electrochemical performance with morphology and structure, ACS Energy Lett., 2, 595, 10.1021/acsenergylett.7b00009
Zhang, 2013, Ternary sulfur/polyacrylonitrile/Mg0.6Ni0.4O composite cathodes for high performance lithium/sulfur batteries, J. Mater. Chem. A, 1, 295, 10.1039/C2TA00105E
Zhang, 2013, Effect of graphene on sulfur/polyacrylonitrile nanocomposite cathode in high performance lithium/sulfur batteries, J. Electrochem. Soc., 160, A1194, 10.1149/2.068308jes
Xu, 2016, Greatly suppressed shuttle effect for improved lithium sulfur battery performance through short chain intermediates, Nano Lett., 17, 538, 10.1021/acs.nanolett.6b04610
Fu, 2016, Solid state lithiation–delithiation of sulphur in sub-nano confinement: a new concept for designing lithium–sulphur batteries, Chem. Sci., 7, 1224, 10.1039/C5SC03419A
Yang, 2015, Electrochemical (de) lithiation of 1D sulfur chains in Li–S batteries: a model system study, J. Am. Chem. Soc., 137, 2215, 10.1021/ja513009v
Fu, 2016, Electrochemical lithiation of covalently bonded sulfur in vulcanized polyisoprene, ACS Energy Lett., 1, 115, 10.1021/acsenergylett.6b00073
J. Chastain, R.C. King, J. Moulder, Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data, Physical Electronics Division, Perkin-Elmer Corporation Eden Prairie, Minnesota, 1992.
Park, 2015, Trapping lithium polysulfides of a Li–S battery by forming lithium bonds in a polymer matrix, Energy Environ. Sci., 8, 2389, 10.1039/C5EE01809A