High performance freestanding composite cathode for lithium-sulfur batteries

Electrochimica Acta - Tập 217 - Trang 242-248 - 2016
Almagul Mentbayeva1,2, Ayaulym Belgibayeva1, Nurzhan Umirov1,2, Yongguang Zhang3, Izumi Taniguchi4, Indira Kurmanbayeva1,2, Zhumabay Bakenov1,2
1Institute of Batteries LLC, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
2School of Engineering, Center for Energy and Advanced Materials Science, National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
3Research Institute for Energy Equipment Materials, Hebei University of Technology, Tianjin 300130, China
4Tokyo Institute of Technology, 12-1, Ookayama-2, Meguro-ku, Tokyo 152-8552, Japan

Tài liệu tham khảo

Bruce, 2008, Nanomaterials for Rechargeable Lithium Batteries, Angew. Chem. Int. Ed., 47, 2930, 10.1002/anie.200702505 Zhang, 2013, Effect of Mg0.6Ni0.4O on cyclability of sulfur composite cathode in lithium-sulfur battery, J. Mater. Chem. A, 1, 295, 10.1039/C2TA00105E Hara, 2015, High mass-loading of sulfur-based cathode composites and polysulfides stabilization for rechargeable lithium/sulfur batteries, Front. Energy Res, 3, 22, 10.3389/fenrg.2015.00022 Urbonaite, 2015, Progress towards commercially viable Li-S battery cells, Adv. Energy Mater., 1500118, 10.1002/aenm.201500118 Bresser, 2013, Recent progress and remaining challenges in sulfur-based lithium secondary batteries − A review, Chem. Commun., 49, 10545, 10.1039/c3cc46131a Zhang, 2014, Synthesis of Hierarchical Porous Sulfur/Polypyrrole/Multiwalled Carbon Nanotube Composite Cathode for Lithium Batteries, Electrochim. Acta, 143, 49, 10.1016/j.electacta.2014.07.148 Chena, 2011, Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium–sulfur battery, Electrochim. Acta, 56, 9549, 10.1016/j.electacta.2011.03.005 Xu, 2015, Sulfur/three-dimensional graphene composite for high performance lithium sulfur batteries, J. Power Sources, 275, 22, 10.1016/j.jpowsour.2014.11.007 He, 2013, Tailoring Porosity in Carbon Nanospheres for Lithium–Sulfur Battery Cathodes, ACS Nano, 7, 10920, 10.1021/nn404439r Wang, 2003, Polymer lithium cells with sulfur composites as cathode materials, Electrochim. Acta, 48, 1861, 10.1016/S0013-4686(03)00258-5 Wang, 2003, Sulfur Composite Cathode Materials for Rechargeable Lithium Batteries, Adv. Funct. Mater., 13, 487, 10.1002/adfm.200304284 Wang, 2002, A Novel Conductive Polymer?Sulfur Composite Cathode Material for Rechargeable Lithium Batteries, Adv. Mater., 14, 963, 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P Doan, 2013, Binding mechanism of sulfur and dehydrogenated polyacrylonitrile in sulfur/polymer composite cathode, J. Power Sources, 241, 61, 10.1016/j.jpowsour.2013.04.113 Fanous, 2013, High Energy Density Poly(acrylonitrile)-Sulfur Composite-Based Lithium-Sulfur Batteries, J. Electrochem. Soc., 160, A1169, 10.1149/2.052308jes Yin, 2012, Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li–S batteries, Energy Environ. Sci., 5, 6966, 10.1039/c2ee03495f Yin, 2012, Dual-mode sulfur-based cathode materials for rechargeable Li-S batteries, Chem. Commun., 48, 7868, 10.1039/c2cc33333c Yermukhambetova, 2015, Examining the effect of nanosized Mg0.6Ni0.4O and Al2O3 additives on S/Polyaniline cathodes for lithium-sulphur batteries, J. Electroanalyt. Chem. Zhao, 2015, Carbon/sulfur composite cathodes for flexible lithium/sulfur batteries: status and prospects, Front. Energy Res., 3, 1, 10.3389/fenrg.2015.00002 Hu, 2014, Flexible rechargeable lithium ion batteries: advances and challenges in materials and process technologies, J. Mater. Chem. A, 2, 10712, 10.1039/C4TA00716F Gwon, 2014, Recent progress on flexible lithium rechargeable batteries, Energy Environ. Sci., 7, 538, 10.1039/C3EE42927J Fu, 2014, Sulfur gradient-distributed CNF composite: a self-inhibiting cathode for binder-free lithium–sulfur batteries, Chem. Commun., 50, 10277, 10.1039/C4CC04970E Swiderska-Mocek, 2015, Lithium–sulphur battery with activated carbon cloth-sulphur cathode and ionic liquid as electrolyte, J. Power Sources, 273, 162, 10.1016/j.jpowsour.2014.09.020 Zeng, 2014, Free-standing porous carbon nanofibers–sulfur composite for flexible Li–S battery cathode, Nanoscale, 6, 9579, 10.1039/C4NR02498B Fu, 2014, Li2S-Carbon Sandwiched Electrodes with Superior Performance for Lithium-Sulfur Batteries, Adv. Energy Mater., 4, 1300655, 10.1002/aenm.201300655 Zhang, 2015, A high-density graphene–sulfur assembly: a promising cathode for compact Li–S batteries, Nanoscale, 7, 5592, 10.1039/C4NR06863G Zhou, 2014, Progress in flexible lithium batteries and future prospects, Energy Environ. Sci., 7, 1307, 10.1039/C3EE43182G Sun, 2014, Sulfur Nanocrystals Confined in Carbon Nanotube Network As a Binder-Free Electrode for High-Performance Lithium Sulfur Batteries, Nano lett., 14, 4044, 10.1021/nl501486n Yuan, 2014, Hierarchical freestanding carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium–sulfur batteries, Adv. Funct. Mater., 24, 6105, 10.1002/adfm.201401501 Chen, 2015, Flexible carbon nanotube-graphene/sulfur composite film: Free standing cathode for high-performance lithium/sulfur batteries, J. Phys. Chem., 119, 10288 Zhu, 2015, Interconnected carbon nanotube/graphene nanosphere scaffold as free-standing paper electrode for high rate and ultra-stable lithium-sulfur batteries, Nano Energy, 11, 746, 10.1016/j.nanoen.2014.11.062 Konarov, 2014, Simple, scalable, and economical preparation of sulfur-PAN composite cathodes for Li/S batteries, J. Power Sources, 259, 183, 10.1016/j.jpowsour.2014.02.078 Solhy, 2008, MWCNT activation and its influence on the catalytic performance of Pt/MWCNT catalysts for selective hydrogenation, Carbon, 46, 1194, 10.1016/j.carbon.2008.04.018 Wang, 2015, Sulfur-Based Composite Cathode Materials for High-Energy Rechargeable Lithium Batteries, Adv. Mater., 27, 569, 10.1002/adma.201402569 Fronczek, 2013, Insight into lithium–sulfur batteries: Elementary kinetic modeling and impedance simulation, J. Power Sources, 244, 183, 10.1016/j.jpowsour.2013.02.018 Bakenov, 2010, Physical and electrochemical properties of LiMnPO4/C composite cathode prepared with different conductive carbons, J. Power Sources, 195, 7445, 10.1016/j.jpowsour.2010.05.023