High performance freestanding composite cathode for lithium-sulfur batteries
Tài liệu tham khảo
Bruce, 2008, Nanomaterials for Rechargeable Lithium Batteries, Angew. Chem. Int. Ed., 47, 2930, 10.1002/anie.200702505
Zhang, 2013, Effect of Mg0.6Ni0.4O on cyclability of sulfur composite cathode in lithium-sulfur battery, J. Mater. Chem. A, 1, 295, 10.1039/C2TA00105E
Hara, 2015, High mass-loading of sulfur-based cathode composites and polysulfides stabilization for rechargeable lithium/sulfur batteries, Front. Energy Res, 3, 22, 10.3389/fenrg.2015.00022
Urbonaite, 2015, Progress towards commercially viable Li-S battery cells, Adv. Energy Mater., 1500118, 10.1002/aenm.201500118
Bresser, 2013, Recent progress and remaining challenges in sulfur-based lithium secondary batteries − A review, Chem. Commun., 49, 10545, 10.1039/c3cc46131a
Zhang, 2014, Synthesis of Hierarchical Porous Sulfur/Polypyrrole/Multiwalled Carbon Nanotube Composite Cathode for Lithium Batteries, Electrochim. Acta, 143, 49, 10.1016/j.electacta.2014.07.148
Chena, 2011, Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium–sulfur battery, Electrochim. Acta, 56, 9549, 10.1016/j.electacta.2011.03.005
Xu, 2015, Sulfur/three-dimensional graphene composite for high performance lithium sulfur batteries, J. Power Sources, 275, 22, 10.1016/j.jpowsour.2014.11.007
He, 2013, Tailoring Porosity in Carbon Nanospheres for Lithium–Sulfur Battery Cathodes, ACS Nano, 7, 10920, 10.1021/nn404439r
Wang, 2003, Polymer lithium cells with sulfur composites as cathode materials, Electrochim. Acta, 48, 1861, 10.1016/S0013-4686(03)00258-5
Wang, 2003, Sulfur Composite Cathode Materials for Rechargeable Lithium Batteries, Adv. Funct. Mater., 13, 487, 10.1002/adfm.200304284
Wang, 2002, A Novel Conductive Polymer?Sulfur Composite Cathode Material for Rechargeable Lithium Batteries, Adv. Mater., 14, 963, 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P
Doan, 2013, Binding mechanism of sulfur and dehydrogenated polyacrylonitrile in sulfur/polymer composite cathode, J. Power Sources, 241, 61, 10.1016/j.jpowsour.2013.04.113
Fanous, 2013, High Energy Density Poly(acrylonitrile)-Sulfur Composite-Based Lithium-Sulfur Batteries, J. Electrochem. Soc., 160, A1169, 10.1149/2.052308jes
Yin, 2012, Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li–S batteries, Energy Environ. Sci., 5, 6966, 10.1039/c2ee03495f
Yin, 2012, Dual-mode sulfur-based cathode materials for rechargeable Li-S batteries, Chem. Commun., 48, 7868, 10.1039/c2cc33333c
Yermukhambetova, 2015, Examining the effect of nanosized Mg0.6Ni0.4O and Al2O3 additives on S/Polyaniline cathodes for lithium-sulphur batteries, J. Electroanalyt. Chem.
Zhao, 2015, Carbon/sulfur composite cathodes for flexible lithium/sulfur batteries: status and prospects, Front. Energy Res., 3, 1, 10.3389/fenrg.2015.00002
Hu, 2014, Flexible rechargeable lithium ion batteries: advances and challenges in materials and process technologies, J. Mater. Chem. A, 2, 10712, 10.1039/C4TA00716F
Gwon, 2014, Recent progress on flexible lithium rechargeable batteries, Energy Environ. Sci., 7, 538, 10.1039/C3EE42927J
Fu, 2014, Sulfur gradient-distributed CNF composite: a self-inhibiting cathode for binder-free lithium–sulfur batteries, Chem. Commun., 50, 10277, 10.1039/C4CC04970E
Swiderska-Mocek, 2015, Lithium–sulphur battery with activated carbon cloth-sulphur cathode and ionic liquid as electrolyte, J. Power Sources, 273, 162, 10.1016/j.jpowsour.2014.09.020
Zeng, 2014, Free-standing porous carbon nanofibers–sulfur composite for flexible Li–S battery cathode, Nanoscale, 6, 9579, 10.1039/C4NR02498B
Fu, 2014, Li2S-Carbon Sandwiched Electrodes with Superior Performance for Lithium-Sulfur Batteries, Adv. Energy Mater., 4, 1300655, 10.1002/aenm.201300655
Zhang, 2015, A high-density graphene–sulfur assembly: a promising cathode for compact Li–S batteries, Nanoscale, 7, 5592, 10.1039/C4NR06863G
Zhou, 2014, Progress in flexible lithium batteries and future prospects, Energy Environ. Sci., 7, 1307, 10.1039/C3EE43182G
Sun, 2014, Sulfur Nanocrystals Confined in Carbon Nanotube Network As a Binder-Free Electrode for High-Performance Lithium Sulfur Batteries, Nano lett., 14, 4044, 10.1021/nl501486n
Yuan, 2014, Hierarchical freestanding carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium–sulfur batteries, Adv. Funct. Mater., 24, 6105, 10.1002/adfm.201401501
Chen, 2015, Flexible carbon nanotube-graphene/sulfur composite film: Free standing cathode for high-performance lithium/sulfur batteries, J. Phys. Chem., 119, 10288
Zhu, 2015, Interconnected carbon nanotube/graphene nanosphere scaffold as free-standing paper electrode for high rate and ultra-stable lithium-sulfur batteries, Nano Energy, 11, 746, 10.1016/j.nanoen.2014.11.062
Konarov, 2014, Simple, scalable, and economical preparation of sulfur-PAN composite cathodes for Li/S batteries, J. Power Sources, 259, 183, 10.1016/j.jpowsour.2014.02.078
Solhy, 2008, MWCNT activation and its influence on the catalytic performance of Pt/MWCNT catalysts for selective hydrogenation, Carbon, 46, 1194, 10.1016/j.carbon.2008.04.018
Wang, 2015, Sulfur-Based Composite Cathode Materials for High-Energy Rechargeable Lithium Batteries, Adv. Mater., 27, 569, 10.1002/adma.201402569
Fronczek, 2013, Insight into lithium–sulfur batteries: Elementary kinetic modeling and impedance simulation, J. Power Sources, 244, 183, 10.1016/j.jpowsour.2013.02.018
Bakenov, 2010, Physical and electrochemical properties of LiMnPO4/C composite cathode prepared with different conductive carbons, J. Power Sources, 195, 7445, 10.1016/j.jpowsour.2010.05.023