Cyclability of sulfur/dehydrogenated polyacrylonitrile composite cathode in lithium–sulfur batteries
Tóm tắt
Sulfur/dehydrogenated polyacrylonitrile composite has been studied as cathode material for lithium–sulfur rechargeable batteries. Nonetheless, capacity fading has been a challenge for the commercialization of batteries. In this study, characterization techniques of scanning electron microscopy, energy dispersive X-ray spectroscopy, elemental analysis, cyclic voltammetry, and electrochemical impedance spectroscopy are used to investigate the change of cathode properties with charge–discharge cycles. Elemental analysis reveals that sulfur accumulates on the surface of the composite at the end of charge, and the sulfur formation decreases with cycle number. Scanning electron microscopy observations indicate that cathode surface morphology changes significantly after several cycles. By modeling the electrochemical impedance spectra of the cell in different discharge states, we suggest that capacity fading arises mainly from the formation and accumulation of irreversible Li2S (and Li2S2) on the cathode surface.
Tài liệu tham khảo
Shim J, Striebel KA, Cairnsa EJ (2002) J Electrochem Soc 149:A1321–A1325
Zheng G, Yang Y, Cha JJ, Hong SS, Cui Y (2011) Nano Lett 11:4462–4467
Kumaresan K, Mikhaylik Y, White RE (2008) J Electrochem Soc 155:A576–A582
Choi JW, Cheruvally G, Kim DS, Ahn JH, Kim KW, Ahn HJ (2008) J Power Sources 183:441–445
Ji XL, Lee KT, Nazar LF (2009) Nat Mater 8:500–506
Wang H, Yang Y, Liang Y, Robinson JT, Li Y, Jackson A, Cui Y, Dai H (2011) Nano Lett 11:2644–2647
Wang J, Yang J, Wan C, Du K, Xie J, Xu N (2003) Adv Funct Mater 13:487–492
Yu XG, Xie JY, Yang J, Huang HJ, Wang K, Wen ZS (2004) J Electroanal Chem 573:121–128
Wei W, Wang J, Zhou L, Yang J, Schumann B, NuLi Y (2011) Electrochem Commun 13:399–402
Zhang B, Qin X, Li GR, Gao XP (2010) Energy Environ Sci 3:1531–1537
Lee YM, Choi NS, Park JH, Park JK (2003) J Power Sources 119–121:964–972
Yang Y, Yu G, Cha JJ, Wu H, Vosgueritchian M, Yao Y, Bao Z, Cui Y (2011) ACS Nano 5:9187–9193
Liang X, Wen Z, Liu Y, Zhang H, Huang L, Jin J (2011) J Power Sources 196:3655–3658
Yuan L, Yuan H, Qiu X, Chen L, Zhu W (2009) J Power Sources 189:1141–1146
Han SC, Song MS, Lee H, Kim HS, Ahn HJ, Lee JY (2003) J Electrochem Soc 150:A889–A893
Doan TNL, Ghaznavi M, Zhao Y, Zhang Y, Konarov A, Sadhu M, Tangirala R, Chen P (2013) J Power Sources 241:61–69
Fanous J, Wegner M, Grimminger J, Andresen Ä, Buchmeiser MR (2011) Chem Mater 23:5024–5028
Evers S, Yim T, Nazar LF (2012) J Phys Chem C 116:19653–19658
Demir-Cakan R, Morcrette Gangulibabu M, Guéguen A, Dedryvère R, Tarascon J-M (2013) Energy Environ Sci 6:176–182
Whittingham MS (2004) Chem Rev 104:4271–4301
Yuan L, Qiu X, Chen L, Zhu W (2009) J Power Sources 189:127–132
Cheon SE, Choi SS, Han JS, Choi YS, Jung BH, Lim HS (2004) J Electrochem Soc 151:A2067–A2073
Cheon SE, Ko KS, Cho JH, Kim SW, Chin EY, Kim HT (2003) J Electrochem Soc 150:A796–A799
Oldham KB, Myland JC (1994) Fundamentals of electrochemical science. Academic, San Diego
Bard AJ, Faulkner LR (1980) Electrochemical methods. Wiley, New York
Doan TNL, Bakenov Z, Taniguchi I (2010) Adv Powder Technol 21:187–196
Doan TNL, Taniguchi I (2011) J Power Sources 196:1399–1408