Cyclability of sulfur/dehydrogenated polyacrylonitrile composite cathode in lithium–sulfur batteries

Springer Science and Business Media LLC - Tập 18 - Trang 69-76 - 2013
The Nam Long Doan1, Mahmoudreza Ghaznavi1, Aishuak Konarov1, Yongguang Zhang1, P. Chen1
1Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada

Tóm tắt

Sulfur/dehydrogenated polyacrylonitrile composite has been studied as cathode material for lithium–sulfur rechargeable batteries. Nonetheless, capacity fading has been a challenge for the commercialization of batteries. In this study, characterization techniques of scanning electron microscopy, energy dispersive X-ray spectroscopy, elemental analysis, cyclic voltammetry, and electrochemical impedance spectroscopy are used to investigate the change of cathode properties with charge–discharge cycles. Elemental analysis reveals that sulfur accumulates on the surface of the composite at the end of charge, and the sulfur formation decreases with cycle number. Scanning electron microscopy observations indicate that cathode surface morphology changes significantly after several cycles. By modeling the electrochemical impedance spectra of the cell in different discharge states, we suggest that capacity fading arises mainly from the formation and accumulation of irreversible Li2S (and Li2S2) on the cathode surface.

Tài liệu tham khảo

Shim J, Striebel KA, Cairnsa EJ (2002) J Electrochem Soc 149:A1321–A1325 Zheng G, Yang Y, Cha JJ, Hong SS, Cui Y (2011) Nano Lett 11:4462–4467 Kumaresan K, Mikhaylik Y, White RE (2008) J Electrochem Soc 155:A576–A582 Choi JW, Cheruvally G, Kim DS, Ahn JH, Kim KW, Ahn HJ (2008) J Power Sources 183:441–445 Ji XL, Lee KT, Nazar LF (2009) Nat Mater 8:500–506 Wang H, Yang Y, Liang Y, Robinson JT, Li Y, Jackson A, Cui Y, Dai H (2011) Nano Lett 11:2644–2647 Wang J, Yang J, Wan C, Du K, Xie J, Xu N (2003) Adv Funct Mater 13:487–492 Yu XG, Xie JY, Yang J, Huang HJ, Wang K, Wen ZS (2004) J Electroanal Chem 573:121–128 Wei W, Wang J, Zhou L, Yang J, Schumann B, NuLi Y (2011) Electrochem Commun 13:399–402 Zhang B, Qin X, Li GR, Gao XP (2010) Energy Environ Sci 3:1531–1537 Lee YM, Choi NS, Park JH, Park JK (2003) J Power Sources 119–121:964–972 Yang Y, Yu G, Cha JJ, Wu H, Vosgueritchian M, Yao Y, Bao Z, Cui Y (2011) ACS Nano 5:9187–9193 Liang X, Wen Z, Liu Y, Zhang H, Huang L, Jin J (2011) J Power Sources 196:3655–3658 Yuan L, Yuan H, Qiu X, Chen L, Zhu W (2009) J Power Sources 189:1141–1146 Han SC, Song MS, Lee H, Kim HS, Ahn HJ, Lee JY (2003) J Electrochem Soc 150:A889–A893 Doan TNL, Ghaznavi M, Zhao Y, Zhang Y, Konarov A, Sadhu M, Tangirala R, Chen P (2013) J Power Sources 241:61–69 Fanous J, Wegner M, Grimminger J, Andresen Ä, Buchmeiser MR (2011) Chem Mater 23:5024–5028 Evers S, Yim T, Nazar LF (2012) J Phys Chem C 116:19653–19658 Demir-Cakan R, Morcrette Gangulibabu M, Guéguen A, Dedryvère R, Tarascon J-M (2013) Energy Environ Sci 6:176–182 Whittingham MS (2004) Chem Rev 104:4271–4301 Yuan L, Qiu X, Chen L, Zhu W (2009) J Power Sources 189:127–132 Cheon SE, Choi SS, Han JS, Choi YS, Jung BH, Lim HS (2004) J Electrochem Soc 151:A2067–A2073 Cheon SE, Ko KS, Cho JH, Kim SW, Chin EY, Kim HT (2003) J Electrochem Soc 150:A796–A799 Oldham KB, Myland JC (1994) Fundamentals of electrochemical science. Academic, San Diego Bard AJ, Faulkner LR (1980) Electrochemical methods. Wiley, New York Doan TNL, Bakenov Z, Taniguchi I (2010) Adv Powder Technol 21:187–196 Doan TNL, Taniguchi I (2011) J Power Sources 196:1399–1408