Chuỗi Mẫu Số Mũ: Sự Hội Tụ trong Không Gian Mellin–Lebesgue

Results in Mathematics - Tập 74 - Trang 1-20 - 2019
Carlo Bardaro1, Ilaria Mantellini1, Gerhard Schmeisser2
1Department of Mathematics and Computer Sciences, University of Perugia, Perugia, Italy
2Department Mathematik, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany

Tóm tắt

Trong bài báo này, chúng tôi nghiên cứu sự hội tụ theo chuẩn đến một hàm f của chuỗi mẫu số mũ tổng quát của nó trong các không gian Lebesgue có trọng số. Một số kết quả đóng vai trò quan trọng liên quan đến mật độ chuẩn của các hàm thử và khái niệm về biến thiên thô bị giới hạn. Một số ví dụ được mô tả.

Từ khóa


Tài liệu tham khảo

Bardaro, C., Vinti, G.: An abstract approach to sampling-type operators inspired by the work of P.L. Butzer: I. Linear operators. Sampl. Theory Signal Image Process. 2(3), 271–295 (2003)

Bardaro, C., Vinti, G.: An abstract approach to sampling-type operators inspired by the work of P.L. Butzer: II. Nonlinear operators. Sampl. Theory Signal Image Process. 3(1), 29–44 (2004)

Butzer, P.L., Jansche, S.: Mellin transform theory and its role of its differential and integral operators. In: Transform Methods and Special Functions, Varna ’96, Bulgarian Academy of Science Sofia, pp. 63–83 (1998)

Butzer, P.L., Jansche, S.: The finite Mellin transform, Mellin–Fourier series and the Mellin–Posson summation formula. R. C. Mater. Palermo, Ser. II Suppl. 52, 55–81 (1998)

Butzer, P.L., Jansche, S.: The exponential sampling theorem of signal analysis. Atti Sem. Mat. Fis. Univ. Modena 46, 99–122 (1998)

Butzer, P.L., Splettstößer, W., Stens, R.L.: The sampling theorem and linear prediction in signal analysis. Jahresber. Deutsch. Math. Ver. 90, 1–70 (1988)

Butzer, P.L., Stens, R.L.: Prediction of non-bandlimited signals in terms of splines of low degree. Math. Nachr. 132, 115–130 (1987)

Folland, G.B.: Real Analysis: Modern Techniques and Their Applications. Wiley, New York (1984)

Gori, F.: Sampling in optics. In: Marks II, R.J. (ed.) Advanced Topics in Shannon Sampling and Interpolation Theory, pp. 37–83. Springer, New York (1993)

Higgins, J.R.: Sampling Theory in Fourier and Signal Analysis. Foundations. Oxford Univ. Press, Oxford (1996)

Higgins, J.R., Schmeisser, G., Voss, J.J.: The sampling theorem and several equivalent results in analysis. J. Comput. Anal. Appl. 2(4), 333–371 (2000)

Osgood, C.F., Shisha, O.: On simple integrability and bounded coarse variation. Approximation theory II. In: Proceedings of International Symposium on University of Texas, Austin, Academic Press, NY, pp. 491–501 (1976)

Ries, S., Stens, R.L.: Approximation by generalized sampling series. In: Sendov, B.L., Petrushev, P., Maalev, R., Tashev, S. (eds.) Constructive Theory of Functions, pp. 746–756. Pugl. House Bulgarian Academy of Sciences, Sofia (1984)

Schmeisser, G.: Quadrature over a semi-infinite interval and Mellin transform. In: Lyubarskii, Y. (ed.) Proceedings of the 1999 International Workshop on Sampling Theory and Applications, pp. 203–208. Norwegian University of Science and Technology, Trondheim (1999)

Zayed, A.I.: Advances in Shannon’s Sampling Theory. CRC Press, Boca Raton (1993)