Seven pivotal theorems of Fourier analysis, signal analysis, numerical analysis and number theory: their interconnections
Tóm tắt
The present paper deals mainly with seven fundamental theorems of mathematical analysis, numerical analysis, and number theory, namely the generalized Parseval decomposition formula (GPDF), introduced 15 years ago, the well-known approximate sampling theorem (ASF), the new approximate reproducing kernel theorem, the basic Poisson summation formula, already known to Gauß, a newer version of the GPDF having a structure similar to that of the Poisson summation formula, namely, the Parseval decomposition–Poisson summation formula, the functional equation of Riemann’s zeta function, as well as the Euler–Maclaurin summation formula. It will in fact be shown that these seven theorems are all equivalent to one another, in the sense that each is a corollary of the others. Since these theorems can all be deduced from each other, one of them has to be proven independently in order to verify all. It is convenient to choose the ASF, introduced in 1963. The epilogue treats possible extensions to the more general contexts of reproducing kernel theory and of abstract harmonic analysis, using locally compact abelian groups. This paper is expository in the sense that it treats a number of mathematical theorems, their interconnections, their equivalence to one another. On the other hand, the proofs of the many intricate interconnections among these theorems are new in their essential steps and conclusions.
Tài liệu tham khảo
Aldroubi, A., Gröchenig, K.: Nonuniform sampling and reconstruction in shift-invariant spaces. SIAM Rev. 43(4), 585–620 (2001). doi:10.1137/S0036144501386986 (electronic)
Apostol, T.M.: Modular Functions and Dirichlet Series in Number Theory, 2nd edn. Springer, New York (1990). doi:10.1007/978-1-4612-0999-7
Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)
Beaty, M.G., Dodson, M.M.: Abstract harmonic analysis and the sampling theorem. In: Higgins, J.R., Stens, R.L. (eds.) Sampling Theory in Fourier and Signal Analysis, vol 2: Advanced Topics, chap. 10, pp. 233–265. Oxford University Press, Oxford (1999)
Beaty, M.G., Dodson, M.M.: The Whittaker-Kotel’nikov-Shannon theorem, spectral translates and Plancherel’s formula. J. Fourier Anal. Appl. 10(2), 179–199 (2004). doi:10.1007/s00041-004-8010-6
Beaty, M.G., Dodson, M.M., Eveson, S.P.: A converse to Kluvánek’s theorem. J. Fourier Anal. Appl. 13(2), 187–196 (2007). doi:10.1007/s00041-006-6025-x
Beaty, M.G., Dodson, M.M., Eveson, S.P., Higgins, J.R.: On the approximate form of Kluvánek’s theorem. J. Approx. Theory 160(1–2), 281–303 (2009). doi:10.1016/j.jat.2009.02.013
Bellman, R.: A Brief Introduction to Theta Functions. Holt, Rinehart and Winston, New York (1961)
Boas Jr, R.P.: Summation formulas and band-limited signals. Tôhoku Math. J. 2(24), 121–125 (1972). doi:10.2748/tmj/1178241524
Bochner, S.: Vorlesungen über Fouriersche Integrale. Chelsea Publishing Co., New York (1948)
Brown Jr, J.L.: On the error in reconstructing a non-bandlimited function by means of the bandpass sampling theorem. J. Math. Anal. Appl. 18(1), 75–84 (1967). doi:10.1016/0022-247X(67)90183-7
Brown Jr, J.L.: Erratum to: “On the error in reconstructing a nonbandlimited function by means of the bandpass sampling theorem”. J. Math. Anal. Appl. 21, 699 (1968). doi:10.1016/0022-247X(68)90271-0
Brüdern, J.: Einführung in die analytische Zahlentheorie. Springer, Berlin (1995)
Butzer, P.L., Schmeisser, G., Stens, R.L.: The classical and approximate sampling theorems and their equivalence for entire functions of exponential type. J. Approx. Theory 179, 94–111 (2014). doi:10.1016/j.jat.2013.11.010
Butzer, P.L., Ferreira, P.J.S.G., Higgins, J.R., Schmeisser, G., Stens, R.L.: The sampling theorem, Poisson’s summation formula, general Parseval formula, reproducing kernel formula and the Paley-Wiener theorem for bandlimited signals - their interconnections. Appl. Anal. 90(3–4), 431–461 (2011). doi:10.1080/00036811003627567
Butzer, P.L., Ferreira, P.J.S.G., Schmeisser, G., Stens, R.L.: The summation formulae of Euler–Maclaurin, Abel–Plana, Poisson, and their interconnections with the approximate sampling formula of signal analysis. Results Math. 59(3–4), 359–400 (2011). doi:10.1007/s00025-010-0083-8
Butzer, P.L., Gessinger, A.: A decomposition theorem for Parseval’s equation; Connections with uniform and nonuniform sampling. In: Bilinskis, I., Cain, G., Marvasti, F. (eds.) SampTA’95, pp. 100–107. Institute of Electronics and Computer Science, Riga (1995)
Butzer, P.L., Gessinger, A.: The approximate sampling theorem, Poisson’s sum formula, a decomposition theorem for Parseval’s equation and their interconnections. Ann. Numer. Math. 4(1–4), 143–160 (1997)
Butzer, P.L., Jansche, S.: A direct approach to the Mellin transform. J. Fourier Anal. Appl. 3(4), 325–376 (1997). doi:10.1007/BF02649101
Butzer, P.L., Nessel, R.J.: Fourier Analysis and Approximation. Academic Press, New York; Birkhäuser Verlag, Basel (1971)
Butzer, P.L., Schmeisser, G., Stens, R.L.: An introduction to sampling analysis. In: Marvasti, F. (ed.) Nonuniform Sampling: Theory and Practice, pp. 17–121. Kluwer/Plenum, New York (2001). doi:10.1007/978-1-4615-1229-5
Butzer, P.L., Splettstößer, W.: Approximation und Interpolation durch verallgemeinerte Abtastsummen. Forschungsberichte des Landes Nordrhein-Westfalen Nr. 2708. Westdeutscher, Opladen (1977)
Butzer, P.L., Stens, R.L.: The Euler–MacLaurin summation formula, the sampling theorem, and approximate integration over the real axis. Linear Algebra Appl. 52(53), 141–155 (1983). doi:10.1016/0024-3795(83)80011-1
Butzer, P.L., Stens, R.L.: The Poisson summation formula, Whittaker’s cardinal series and approximate integration. In: Ditzian, Z., Meir, A., Riemenschneider, S.D., Sharma, A. (eds.) Second Edmonton Conference on Approximation Theory, pp. 19–36. American Mathematical Society, Providence (1983)
Deitmar, A.: A First Course in Harmonic Analysis, 2nd edn. Springer, New York (2005)
Dodson, M.M.: Approximating signals in the abstract. Appl. Anal. 90(3–4), 563–578 (2011). doi:10.1080/00036811003627575
Doetsch, G.: Summatorische Eigenschaften der Besselschen Funktionen und andere Funktionalrelationen, die mit der linearen Transformationsformel der Thetafunktion äquivalent sind. Compositio Math. 1, 85–97 (1935)
Faridani, A.: A generalized sampling theorem for locally compact abelian groups. Math. Comp. 63(207), 307–327 (1994). doi:10.2307/2153577
Feldman, J., Greenleaf, F.P.: Existence of Borel transversals in groups. Pac. J. Math. 25, 455–461 (1968)
Ferrar, W.L.: Summation formulae and their relation to Dirichlet’s series. Compositio Math. 1, 344–360 (1935). http://www.numdam.org/item?id=CM_1935__1__344_0
Flajolet, P., Gourdon, X., Dumas, P.: Mellin transforms and asymptotics: harmonic sums. Theoret. Comput. Sci. 144(1–2), 3–58 (1995). doi:10.1016/0304-3975(95)00002-E
García, A.G., Portal, A.: Sampling in reproducing kernel Banach spaces. Mediterr. J. Math. Published online: 28 Nov 2012. doi:10.1007/s00009-012-0234-0
Hamburger, H.: Über die Riemannsche Funktionalgleichung der \(\xi \)-Funktion. Math. Z. 10(3–4), 240–254 (1921). doi:10.1007/BF01211612
Hamburger, H.: Über die Riemannsche Funktionalgleichung der \(\zeta \)-Funktion. Math. Z. 11(3–4), 224–245 (1921). doi:10.1007/BF01203626
Hamburger, H.: Über die Riemannsche Funktionalgleichung der \(\zeta \)-Funktion. Math. Z. 13(1), 283–311 (1922). doi: 10.1007/BF01485292
Hamburger, H.: Über einige Beziehungen, die mit der Funktionalgleichung der Riemannschen\(\zeta \)-Funktion äquivalent sind. Math. Ann. 85(1), 129–140 (1922). doi:10.1007/BF01449611
Han, D., Nashed, M.Z., Sun, Q.: Sampling expansions in reproducing kernel Hilbert and Banach spaces. Numer. Funct. Anal. Optim. 30(9–10), 971–987 (2009). doi:10.1080/01630560903408606
Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis, vol. I: Structure of Topological Groups. Integration Theory, Group Representations. Springer, Berlin (1963)
Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis, vol. II: Structure and Analysis for Compact Groups. Analysis on Locally Compact Abelian Groups. Springer, New York (1970)
Hewitt, E., Stromberg, K.: Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable. Springer, Berlin (1965)
Higgins, J.R.: Sampling Theory in Fourier and Signal Analysis. Clarendon Press, Oxford (1996)
Higgins, J.R.: A sampling principle associated with Saitoh’s fundamental theory of linear transformations. In: Saitoh, S., Hayashi, N., Yamamoto, M. (eds.) Analytic Extension Formulas and Their Applications (Collected papers 2nd Internat. Congress of the Internat. Society for Analysis, its Applications and Computation (ISAAC’99), Fukuoka, Japan, Aug. 16–21, 1999, and Research Meeting on Applications of Analytic Extensions, Kyoto, Japan, Jan. 11–13, 2000). Kluwer Academic Publishers, Dordrecht, pp. 73–86 (2001)
Higgins, J.R.: Two basic formulae of Euler and their equivalence to Tschakalov’s sampling theorem. Sampl. Theory Signal Image Process. 2(3), 259–270 (2003)
Higgins, J.R.: H. Hamburger’s collection of five equivalent results, and some later developments, Technical Report, p. 31 (2007)
Higgins, J.R.: The Riemann zeta function and the sampling theorem. Sampl. Theory Signal Image Process. 8(1), 1–12 (2009)
Higgins, J.R.: Paley–Wiener spaces and their reproducing formulae. In: Ruzhansky, M., Wirth, J. (eds.) Progress in Analysis and Its Applications (Proceedings of 7th Internat. ISAAC Congress, London, Jul. 13–18, 2009, pp. 273–279. World Scientific Publisher, Hackensack (2010). doi:10.1142/9789814313179_0036
Hong, Y.M., Kim, J.M., Kwon, K.H.: Sampling theory in abstract reproducing kernel Hilbert space. Sampl. Theory Signal Image Process. 6(1), 109–121 (2007)
Ismail, M.E.H., Nashed, M.Z., Zayed, A.I., Ghaleb, A.F., eds. Mathematical Analysis, Wavelets, and Signal Processing, Proceedings of Internat. Conference on Mathematical Analysis and Signal Processing, Cairo, Jan. 3–9, American Mathematical Society, Providence, 1995, (1994). doi:10.1090/conm/190
Ivić, A.: The Riemann Zeta-Function. Wiley, New York (1985)
Kahane, J.P., Mandelbrojt, S.: Sur l’équation fonctionnelle de Riemann et la formule sommatoire de Poisson. Ann. Sci. École Norm. Sup. 3(75), 57–80 (1958)
Karatsuba, A.A., Voronin, S.M.: The Riemann Zeta-Function. Walter de Gruyter & Co., Berlin (1992). doi:10.1515/9783110886146
Klusch, D.: The sampling theorem, Dirichlet series and Bessel functions. Math. Nachr. 154, 129–139 (1991). doi:10.1002/mana.19911540111
Klusch, D.: The sampling theorem, Dirichlet series and Hankel transforms. J. Comput. Appl. Math. 44(3), 261–273 (1992). doi:10.1016/0377-0427(92)90001-E
Kluvánek, I.: Sampling theorem in abstract harmonic analysis. Mat.-Fyz. Časopis Sloven. Akad. Vied 15, 43–48 (1965)
Knopp, M., Robins, S.: Easy proofs of Riemann’s functional equation for \(\zeta (s)\) and of Lipschitz summation. Proc. Am. Math. Soc. 129(7), 1915–1922 (2001). doi: 10.1090/S0002-9939-01-06033-6
Krazer, A.: Lehrbuch der Thetafunktionen. Chelsea Publishing Co., New York (1970)
Mordell, L.J.: Poisson’s summation formula and the Riemann zeta function. J. Lond. Math. Soc.S1–4(4), 285 (1929). doi:10.1112/jlms/s1-4.4.285
Murty, M.R.: Problems in Analytic Number Theory, 2nd edn. Springer, New York (2008)
Nashed, M.Z.: Inverse problems, moment problems, signal processing: un menage a trois. In: Siddiqi, A.H., Singh, R.C., Manchanda, P. (eds.) Mathematics in Science and Technology (Proceedings of Satellite Conference of the Internat. Congress of Mathematicians, New Delhi, India, Aug. 14–17, 2010). World Scientific Publishers, Hackensack, pp. 2–19 (2011)
Nashed, M.Z., Sun, Q.: Sampling and reconstruction of signals in a reproducing kernel subspace of \(L^{p}({\mathbb{R}}^{d})\). J. Funct. Anal. 258(7), 2422–2452 (2010). doi: 10.1016/j.jfa.2009.12.012
Nashed, M.Z., Sun, Q., Xian, J.: Convolution sampling and reconstruction of signals in a reproducing kernel subspace. Proc. Am. Math. Soc. 141(6), 1995–2007 (2013). doi:10.1090/S0002-9939-2012-11644-2
Nashed, M.Z., Walter, G.G.: Reproducing kernel Hilbert spaces from sampling expansions. In: Ismail, M.E.H., Nashed, M.Z., Zayed, A.I., Ghaleb, A.F. (eds.) Mathematical Analysis, Wavelets, and Signal Processing, pp. 221–226 (1994). doi:10.1090/conm/190/02304
Newman, D.J.: Analytic Number Theory. Springer, New York (1998)
Nikol’skiĭ, S.M.: Approximation of Functions of Several Variables and Imbedding Theorems. Springer, New York (1975)
NuHAG (Numerical Harmonic Analysis Group). http://www.univie.ac.at/nuhag-php/home
Patterson, S.J.: An Introduction to the Theory of the Riemann Zeta-Function. Cambridge University Press, Cambridge (1988). doi:10.1017/CBO9780511623707
Pesenson, I.: Best approximations in a space of the representation of a Lie group (russian). Dokl. Akad. Nauk SSSR 302(5), 1055–1058 (1988). Trans. Soviet Math. Dokl. 38(2), 384–388 (1989)
Pesenson, I.: Sampling of Paley–Wiener functions on stratified groups. J. Fourier Anal. Appl. 4(3), 271–281 (1998). doi:10.1007/BF02476027
Pesenson, I.: A sampling theorem on homogeneous manifolds. Trans. Am. Math. Soc. 352(9), 4257–4269 (2000). doi:10.1090/S0002-9947-00-02592-7
Pesenson, I.: Sampling of band-limited vectors. J. Fourier Anal. Appl. 7(1), 93–100 (2001). doi:10.1007/s00041-001-0007-9
Pesenson, I.: Polynomial splines and eigenvalue approximations on quantum graphs. J. Approx. Theory 135(2), 203–220 (2005). doi:10.1016/j.jat.2005.04.007
Pesenson, I.: Sampling in Paley–Wiener spaces on combinatorial graphs. Trans. Am. Math. Soc. 360(10), 5603–5627 (2008). doi:10.1090/S0002-9947-08-04511-X
Reiter, H.: Classical Harmonic Analysis and Locally Compact Groups. Clarendon Press, Oxford (1968)
Riemann, B.: Über die Anzahl der Primzahlen unter einer gegebenen Größe. Monatsber. Königl. Preuss. Akad. Wiss. Berlin Nov. 1859, 671–680. Reprinted. In: Riemann, B., Narasimhan, R. (eds.) Gesammelte mathematische Werke, wissenschaftlicher Nachlass und Nachträge, (Based on the edition by Weber, H., Dedekind, R.). Springer, Berlin (1990)
Rooney, P.G.: Another proof of the functional equation for the Riemann zeta function. J. Math. Anal. Appl. 185(1), 223–228 (1994). doi:10.1006/jmaa.1994.1244
Rudin, W.: Fourier Analysis on Groups. Interscience Publishers, New York (1962)
Saitoh, S.: Integral Transforms. Reproducing Kernels and Their Applications. Longman, Harlow (1997)
Schuster, W.: Ein kurzer Beweis der Funktionalgleichung der Riemannschen Zetafunktion (a short proof of the functional equation of the riemann zeta function). Aequationes Math. 70(1–2), 191–194 (2005). doi:10.1007/s00010-004-2743-9
Siegel, C.: Bemerkung zu einem Satz von Hamburger über die Funktionalgleichung der Riemannschen Zetafunktion. Math. Ann. 86(3–4), 276–279 (1922). doi:10.1007/BF01457989
Stenger, F.: Numerical Methods Based on sinc and Analytic Functions. Springer, New York (1993)
Stenger, F.: Sinc convolution-a tool for circumventing some limitations of classical signal processing. In: Ismail, M.E.H., Nashed, M.Z., Zayed, A.I., Ghaleb, A.F. (eds.) Mathematical Analysis, Wavelets, and Signal Processing, pp. 227–240 (1994). doi:10.1090/conm/190/02305
Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function, 2nd edn. Clarendon Press, New York (1986)
Weiss, P.: An estimate of the error arising from misapplication of the sampling theorem. Notices Am. Math. Soc. 10, 351 (1963). Abstract No. 601–54
Zayed, A.I.: Advances in Shannon’s Sampling Theory. CRC Press, Boca Raton (1993)
Zygmund, A.: Trigonometric Series. vols. I, II, 2nd edn., reprinted with corrections and some additions (two volumes bound as one) edn. Cambridge University Press, London (1968)