Mellin analysis and its basic associated metric—applications to sampling theory

Carlo Bardaro1, Paul L. Butzer2, Ilaria Mantellini1, Gerhard Schmeißer3
1Department of Mathematics and Computer Sciences, University of Perugia, Perugia, Italy
2Lehrstuhl A fuer Mathematik, RWTH Aachen, Aachen, Germany
3Department of Mathematics, FAU Erlangen-Nuremberg, Erlangen, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

R. A. Adams, Sobolev Spaces, Academic Press (New York–London, 1975).

C. Bardaro, P. L. Butzer and I. Mantellini, The exponential sampling theorem of signal analysis and the reproducing kernel formula in the Mellin transform setting, Sampl. Theory Signal Image Process., 13 (2014), 35–66.

C. Bardaro, P. L. Butzer and I. Mantellini, The foundations of fractional calculus in the Mellin transform setting with applications, J. Fourier Anal. Appl., 21 (2015), 961–1017.

C. Bardaro, P. L. Butzer and I. Mantellini, The Mellin–Parseval formula and its interconnections with the exponential sampling theorem of optical physics, Integral Transforms Spec. Funct., 27 (2016), 17–29.

C. Bardaro, P. L. Butzer, I. Mantellini and G. Schmeisser, On the Paley–Wiener theorem in the Mellin transform setting, J. Approx. Theory, 207 (2016), 60–75.

R. P. Boas, The derivative of a trigonometric integral, J. London Math. Soc., 12 (1937), 164–165.

M. Bertero and E. R. Pike, Exponential sampling method for Laplace and other dilationally invariant transforms I. Singular-system analysis; II. Examples in photon correlation spectroscopy and Fraunhofer diffraction, Inverse Problems, 7 (1991), 1–20, 21–41.

P. L. Butzer and S. Jansche, Mellin transform theory and the role of its differential and integral operators, in: “Proc. Workshop on Transform Methods and Special Functions”, Varna, 1996, Bulgarian Acad. Sci. (Sofia, 1998), pp. 63–83.

P. L. Butzer and S. Jansche, A direct approach to Mellin transforms, J. Fourier Anal. Appl. 3 (1997), 325–375.

P. L. Butzer and S. Jansche, The exponential sampling theorem of signal analysis, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 99–122 (special issue dedicated to Professor Calogero Vinti).

P. L. Butzer and S. Jansche, A self contained approach to Mellin transform analysis for square integrable functions and applications, Integral Transforms Spec. Funct., 8 (1999), 175–198.

P. L. Butzer, A. A. Kilbas and J. J. Trujillo, Mellin transform analysis and integration by parts for Hadamard-type fractional integrals, J. Math. Anal. Appl., 270 (2002), 1–15.

P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation, vol. I, Academic Press (New York, 1971).

P. L. Butzer, G. Schmeisser and R. L. Stens, Shannon’s sampling theorem for bandlimited signals and their Hilbert transform, Boas-type formulae for higher order derivatives—the aliasing error involved by their extensions from bandlimited to non-bandlimited signal, Entropy, 14 (2012), 2192–2226.

P. L. Butzer, G. Schmeisser and R. L. Stens, Basic relations valid for the Bernstein Space Bp s and their extensions to functions from larger spaces with error estimates in terms of their distances from Bp s, J. Fourier Anal. Appl., 19 (2013), 333–375.

P. L. Butzer, G. Schmeisser and R. L. Stens, Basic relations valid for the Bernstein spaces B s 2 and their extensions to larger functions spaces via a unified distance concept, in: “Function Spaces X”, Banach Centre Publications, 102 (Warszawa, 2014), pp. 41–55.

I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products (fifth edition), Academic Press (San Diego, CA, 1994).

R. G. Mamedov, The Mellin Transform and Approximation Theory, Elm (Baku, 1991) (in Russian).

N. Ostrowsky, D. Sornette, P. Parker and E. R. Pike, Exponential sampling method for light scattering polydispersity analysis, Opt. Acta, 28 (1994), 10591070.

M. Riesz, Formule d’interpolation pour la dérivée d’un polynôme, C. R. Acad. Sci. Paris, 158 (1914), 1152–1154.

G. Schmeisser, Numerical differentiation inspired by a formula of R.P. Boas, J. Approx. Theory, 160 (2009), 202–222.