Epiphytic bacteria from withered grapes and their antagonistic effects on grape-rotting fungi

International Journal of Food Microbiology - Tập 319 - Trang 108505 - 2020
Marilinda Lorenzini1, Giacomo Zapparoli1
1Dipartimento di Biotecnologie, Università Degli Studi di Verona, 37134, Verona, Italy

Tài liệu tham khảo

Anderolli, 2011, Burkholderia fungorum DBT1: a promising bacterial strain for bioremediation of PAHs-contaminated soils, FEMS Microbiol. Lett., 319, 11, 10.1111/j.1574-6968.2011.02259.x

Andreolli, 2016, Diversity of bacterial endophytes in 3 and 15 year-old grapevines of Vitis vinifera cv. Corvina and their potential for plant growth promotion and phytopathogen control, Microbiol. Res., 183, 42, 10.1016/j.micres.2015.11.009

Aung, 2018, The role of water in plant–microbe interactions, Plant J., 93, 771, 10.1111/tpj.13795

Barata, 2012, The microbial ecology of wine grape berries, Int. J. Food Microbiol., 153, 243, 10.1016/j.ijfoodmicro.2011.11.025

de Boer, 2007, In vitro suppression of fungi caused by combinations of apparently non-antagonistic soil bacteria, FEMS Microbiol. Ecol., 59, 177, 10.1111/j.1574-6941.2006.00197.x

Bokulich, 2014, Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate, Proc. Natl. Acad. Sci. U. S. A., 7, E139, 10.1073/pnas.1317377110

Carmona-Hernandez, 2019, Biocontrol of postharvest fruit fungal diseases by bacterial antagonists: a review, Agronomy, 9, 121, 10.3390/agronomy9030121

Domizio, 2011, Vin Santo, Adv. Food Nutr. Res., 63, 41, 10.1016/B978-0-12-384927-4.00003-8

Guzzon, 2014, A new resource from traditional wines: characterization of the microbiota of “Vino Santo” grapes as a biocontrol agent against Botrytis cinerea, Eur. Food Res. Technol., 239, 117, 10.1007/s00217-014-2195-y

Kasfi, 2018, Identification of epiphytic yeasts and bacteria with potential for biocontrol of grey mold disease on table grapes caused by Botrytis cinerea, Span. J. Agric. Res., 16, 1, 10.5424/sjar/2018161-11378

Martins, 2013, Characterization of epiphytic bacterial communities from grapes, leaves, bark and soil of grapevine plants grown, and their relations, PLoS One, 8, 10.1371/journal.pone.0073013

Mencarelli, 2013

Mulet, 2010, DNA sequence-based analysis of the Pseudomonas species, Environ. Microbiol., 12, 1513, 10.1111/j.1462-2920.2010.02181.x

Rabosto, 2006, Grapes and vineyard soils as source of microorganisms for biological control of Botrytis cinerea, Am. J. Enol. Vitic., 57, 332, 10.5344/ajev.2006.57.3.332

Renouf, 2005, Understanding the microbial ecosystem on the grape berry surface through numeration and identification of yeast and bacteria, Aust. J. Grape Wine Res., 11, 316, 10.1111/j.1755-0238.2005.tb00031.x

Rossi-Tamisier, 2015, Cautionary tale of using 16S rRNA gene sequence similarity values in identification of human-associated bacterial species, Int. J. Syst. Evol. Microbiol., 65, 1929, 10.1099/ijs.0.000161

Salvetti, 2016, Whole-metagenome-sequencing-based community profiles of Vitis vinifera L. cv. Corvina berries withered in two post-harvest conditions, Front. Microbiol., 7, 937, 10.3389/fmicb.2016.00937

Vitulo, 2019, Bark and grape microbiome of Vitis vinifera: influence of geographic patterns and agronomic management on bacterial diversity, Front. Microbiol., 9, 1, 10.3389/fmicb.2018.03203

Weisburg, 1991, 16S ribosomal DNA amplification for phylogenetic study, J. Bacteriol., 173, 697, 10.1128/JB.173.2.697-703.1991

Zhang, 2019, Grape berry surface bacterial microbiome: impact from the varieties and clones in the same vineyard from central China, J. Appl. Microbiol., 126, 204, 10.1111/jam.14124