Emerging roles for TGF‐β1 in nervous system development

International Journal of Developmental Neuroscience - Tập 23 - Trang 413-424 - 2005
Flávia Carvalho Alcantara Gomes1, Vivian de Oliveira Sousa1, Luciana Romão1
1Instituto de Ciências Biomédicas, Departamento de Anatomia, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Bloco F, Ilha do Fundão, 21949-590 Rio de Janeiro, RJ, Brazil

Tóm tắt

AbstractTransforming growth factor betas (TGF‐βs) are known as multifunctional growth factors, which participate in the regulation of key events of development, disease and tissue repair. In central nervous system (CNS), TGF‐β1 has been widely recognized as an injury‐related cytokine, specially associated with astrocyte scar formation in response to brain injury. TGF‐βs family is represented by three isoforms: TGF‐β1, ‐β2 and ‐β3, all produced by both glial and neuronal cells. They are involved in essential tissue functions, including cell‐cycle control, regulation of early development and differentiation, neuron survival and astrocyte differentiation. TGF‐β signaling is mediated mainly by two serine threonine kinase receptors, TGFRI and TGFRII, which activate Smad 2/3 and Smad 4 transcription factors. Phosphorylation and activation of these proteins is followed by formation of Smad 2/3–4 complex, which translocates to the nucleus regulating transcriptional responses to TGF‐β. Very few data are available concerning the intracellular pathway required for the effect of TGF‐β in brain cells. Recently, emerging data on TGF‐β1 and its signaling molecules have been suggesting that besides its role in brain injury, TGF‐β1 might be a crucial regulator of CNS development. In this review, we will focus on TGF‐βs members, specially TGF‐β1, in neuron and astrocyte development. We will discuss some advances concerning the emerging scenario of TGF‐β1 and its signaling pathways as putative modulators of astrocyte biology and their implications as a novel mediator of cellular interactions in the CNS.

Tài liệu tham khảo

10.1046/j.1469-7580.2002.00064.x

10.1038/ncb826

10.1038/ng0804-790

Angley C., 2003, Signaling by bone morphogenetic proteins and Smad 1 modulates the postnatal differentiation of cerebellar cells, J. Neurosci., 23, 260, 10.1523/JNEUROSCI.23-01-00260.2003

10.1002/glia.440070302

10.1016/0006-8993(72)90398-8

10.1046/j.1471-4159.2000.0752227.x

10.1097/00001756-199611250-00019

10.1016/S0896-6273(03)00766-9

Bruno V., 1998, Neuroprotection by glial metabotropic glutamate receptors is mediated by transforming growth factor‐beta, J. Neurosci., 18, 9594, 10.1523/JNEUROSCI.18-23-09594.1998

10.1523/JNEUROSCI.17-06-01891.1997

10.1186/1742-2094-1-10

Buisson A., 1998, Up‐regulation of a serine protease inhibitor in astrocytes mediates the neuroprotective activity of transforming growth factor beta1, FASEB J., 12, 1683, 10.1096/fasebj.12.15.1683

10.1016/S0006-291X(02)00725-8

10.1210/er.2002-0003

Cheifetz S., 1988, The transforming growth factor‐beta receptor type III is a membrane proteoglycan. Domain structure of the receptor, J. Biol. Chem., 263, 16984, 10.1016/S0021-9258(18)37487-8

10.1002/ajmg.a.10750

10.1046/j.1471-4159.2001.00435.x

10.1016/0165-5728(93)90214-J

10.1046/j.1460-9568.2002.02283.x

Dobbertin A., 1997, Neurons promote macrophage proliferation by producing transforming growth factor‐β2, J. Neurosci., 17, 5305, 10.1523/JNEUROSCI.17-14-05305.1997

10.1042/BJ20040682

Docagne F., 1999, Transforming growth factor‐beta1 as a regulator of the serpins/t‐PA axis in cerebral ischemia, FASEB J., 13, 1315, 10.1096/fasebj.13.11.1315

10.1016/S0092-8674(00)80783-7

10.1074/jbc.M105110200

10.1016/0006-8993(71)90668-8

10.1523/JNEUROSCI.23-12-05178.2003

Flanders K.C., 1991, Localization and actions of transforming growth factor‐βs in the embryonic nervous system, Development, 113, 183, 10.1242/dev.113.1.183

10.1016/S0301-0082(97)00066-X

Fróes M.M., 1996, Junctional coupling between neurons and astrocytes in primary CNS cultures, Proc. Natl. Acad. Sci. U.S.A., 96, 7541, 10.1073/pnas.96.13.7541

10.1002/glia.440130405

10.1002/(SICI)1097-4547(19990601)56:5<531::AID-JNR8>3.0.CO;2-O

10.1016/j.devbrainres.2004.05.008

10.1002/jnr.490400406

10.1002/(SICI)1098-1136(199904)26:2<97::AID-GLIA1>3.0.CO;2-Z

10.1002/(SICI)1098-1136(19990201)25:3<247::AID-GLIA5>3.0.CO;2-2

10.1590/S0100-879X2001000500008

Goodman C., 1997, Molecular Cellular Approaches to Neural Development, 108

10.1016/S0361-9230(01)00777-8

Gurwitz D., 1988, Thrombin modulates and reverses neuroblastoma neurite outgrowth, Proc. Natl. Acad. Sci. U.S.A., 10, 3440, 10.1073/pnas.85.10.3440

10.1002/glia.440040215

10.1002/glia.440070303

10.1016/0006-8993(92)91211-V

10.1016/S0006-8993(98)00325-4

10.1002/(SICI)1097-4695(199812)37:4<563::AID-NEU5>3.0.CO;2-A

Krieglstein K., 1998, Glial cell line‐derived neurotrophic factor requires transforming growth factor‐β for exerting its full neurotrophic potential on peripheral and CNS neurons, J. Neurosci., 18, 9822, 10.1523/JNEUROSCI.18-23-09822.1998

10.1046/j.1460-9568.1998.00324.x

10.1002/jcp.1041440315

10.1523/JNEUROSCI.22-23-10377.2002

10.1074/jbc.M300819200

10.1073/pnas.96.13.7526

10.1083/jcb.117.2.395

10.1016/0092-8674(91)90073-8

10.1016/S0898-6568(02)00058-X

10.1210/en.143.3.1066

10.1074/jbc.M209284200

10.1016/S0197-0186(01)00046-8

10.1016/0092-8674(92)90627-O

10.1146/annurev.biochem.67.1.753

10.1038/35043051

10.1016/0092-8674(91)90549-E

10.1002/glia.10029

10.1016/S1359-6101(99)00025-8

10.1046/j.0953-816x.2001.01795.x

10.1016/0165-5728(92)90185-N

10.1242/jcs.114.24.4359

10.1038/nrn845

10.1111/j.1469-7793.2001.00665.x

10.1523/JNEUROSCI.22-08-03161.2002

10.1083/jcb.115.4.1091

10.1046/j.1471-4159.1995.64020566.x

10.1016/0165-3806(84)90097-X

10.1096/fasebj.9.10.7615163

10.1016/0896-6273(94)90062-0

10.1016/S1359-6101(97)00018-X

10.1038/361453a0

10.1093/genetics/139.1.241

10.1242/dev.01188

10.1007/s00441-004-0916-4

10.1016/S0896-6273(04)00152-7

10.1073/pnas.93.2.790

10.1126/science.270.5244.1992

10.1016/S0092-8674(03)00432-X

10.1093/cercor/bhh039

10.1101/gad.12.1.107

10.1038/417039a

10.1111/j.1460-9568.2004.03249.x

10.1006/dbio.1996.0242

10.1111/j.1471-4159.1990.tb02357.x

10.1523/JNEUROSCI.17-02-00543.1997

10.1007/978-1-4615-0123-7_13

10.1046/j.1432-1327.2000.01824.x

10.1002/jnr.490400114

10.1046/j.1471-4159.1998.70062296.x

10.1002/cne.902890106

10.1016/S1359-6101(99)00024-6

10.1038/370341a0

Würdig S., 1990, Histochemistry of glutamate metabolising enzymes in the rat cerebellar cortex, Neurosci. Lett., 130, 165, 10.1016/0304-3940(91)90388-A

Wyss‐Coray T., 1995, Increased central nervous system production of extracellular matrix components and development of hydrocephalus in transgenic mice overexpressing transforming growth factor‐beta1, Am. J. Pathol., 147, 53

10.1073/pnas.95.7.3667

10.1074/jbc.M308287200

10.1016/S0006-8993(00)02240-X