TGF-β1 induction of the adenine nucleotide translocator 1 in astrocytes occurs through Smads and Sp1 transcription factors
Tóm tắt
The adenine nucleotide translocator 1 (Ant1) is an inner mitochondrial membrane protein involved with energy mobilization during oxidative phosphorylation. We recently showed that rodent Ant1 is upregulated by transforming growth factor-beta (TGF-β) in reactive astrocytes following CNS injury. In the present study, we describe the molecular mechanisms by which TGF-β1 regulates Ant1 gene expression in cultured primary rodent astrocytes. Transcription reporter analysis verified that TGF-β1 regulates transcription of the mouse Ant1 gene, but not the gene encoding the closely related Ant2 isoform. A 69 basepair TGF-β1 responsive element of the Ant1 promoter was also identified. Electrophoretic mobility shift assays demonstrated that astrocyte nuclear proteins bind to this response element and TGF-β1 treatment recruits additional nuclear protein binding to this element. Antibody supershift and promoter deletion analyses demonstrated that Sp1 consensus binding sites in the RE are important for TGF-β1 regulation of Ant1 in astrocytes. Additionally, we demonstrate that Smad 2, 3 and 4 transcription factors are expressed in injured cerebral cortex and in primary astrocyte cultures. TGF-β1 activated Smad transcription factors also contribute to Ant1 regulation since transcription reporter assays in the presence of dominant negative (DN)-Smads 3 and 4 significantly reduced induction of Ant1 by TGF-β1. The specific regulation of Ant1 by TGF-β1 in astrocytes involves a cooperative interaction of both Smad and Sp1 binding elements located immediately upstream of the transcriptional start site. The first report of expression of Smads 2, 3 and 4 in astrocytes provided here is consistent with a regulation of Ant1 gene expression by these transcription factors in reactive astrocytes. Given the similarity in TGF-β1 regulation of Ant1 with other genes that are thought to promote neuronal survival, this interaction may represent a general mechanism that underlies the neuroprotective effects of TGF-β1.
Tài liệu tham khảo
Meyer-Puttlitz B, Junker E, Margolis RU, Margolis RK: Chondroitin sulfate proteoglycans in the developing central nervous system. II. Immunocytochemical localization of neurocan and phosphacan. J Comp Neurol. 1996, 366: 44-54. 10.1002/(SICI)1096-9861(19960226)366:1<44::AID-CNE4>3.0.CO;2-K.
Yamada H, Fredette B, Shitara K, Hagihara K, Miura R, Ranscht B, Stallcup WB, Yamaguchi Y: The brain chondroitin sulfate proteoglycan brevican associates with astrocytes ensheathing cerebellar glomeruli and inhibits neurite outgrowth from granule neurons. J Neurosci. 1997, 17: 7784-7795.
Oohira A, Matsui F, Watanabe E, Kushima Y, Maeda N: Developmentally regulated expression of a brain specific species of chondroitin sulfate proteoglycan, neurocan, identified with a monoclonal antibody IG2 in the rat cerebrum. Neuroscience. 1994, 60: 145-157. 10.1016/0306-4522(94)90210-0.
Asher RA, Scheibe RJ, Keiser HD, Bignami A: On the existence of a cartilage-like proteoglycan and link proteins in the central nervous system. Glia. 1995, 13: 294-308. 10.1002/glia.440130406.
McKeon RJ, Jurynec MJ, Buck CR: The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar. J Neurosci. 1999, 19: 10778-10788.
Buck CR, Jurynec MJ, Gupta DK, Law AK, Bilger J, Wallace DC, McKeon RJ: Increased adenine nucleotide translocator 1 in reactive astrocytes facilitates glutamate transport. Exp Neurol. 2003, 181: 149-158. 10.1016/S0014-4886(03)00043-8.
Schultheiss HP, Schulze K, Dorner A: Significance of the adenine nucleotide translocator in the pathogenesis of viral heart disease. Mol Cell Biochem. 1996, 163-164: 319-327. 10.1007/BF00408672.
Dörner A, Schultheiss HP: The myocardial expression of the adenine nucleotide translocator isoforms is specifically altered in dilated cardiomyopathy. Herz. 2000, 25: 176-180. 10.1007/s000590050004.
Kaukonen J, Juselius JK, Tiranti V, Kyttala A, Zeviani M, Comi GP, Keranen S, Peltonen L, Suomalainen A: Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science. 2000, 289: 782-785. 10.1126/science.289.5480.782.
Graham BH, Waymire KG, Cottrell B, Trounce IA, MacGregor GR, Wallace DC: A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat Genet. 1997, 16: 226-234. 10.1038/ng0797-226.
Powell SJ, Medd SM, Runswick MJ, Walker JE: Two bovine genes for mitochondrial ADP/ATP translocase expressed differences in various tissues. Biochemistry. 1989, 28: 866-873. 10.1021/bi00428a069.
Cozens AL, Runswick MJ, Walker JE: DNA sequences of two expressed nuclear genes for human mitochondrial ADP/ATP translocase. J Mol Biol. 1989, 206: 261-280. 10.1016/0022-2836(89)90477-4.
Shinohara Y, Kamida M, Yamazaki N, Terada H: Isolation and characterization of cDNA clones and a genomic clone encoding rat mitochondrial adenine nucleotide translocator. Biochim Biophys Acta. 1993, 1152: 192-196. 10.1016/0005-2736(93)90248-X.
Lawson JE, Douglas MG: Separate genes encode functionally equivalent ADP/ATP carrier proteins in Saccharomyces cerevisiae. Isolation and analysis of AAC2. J Biol Chem. 1988, 263: 14812-14818.
O'Malley K, Pratt P, Robertson J, Lilly M, Douglas MG: Selection of the nuclear gene for the mitochondrial adenine nucleotide translocator by genetic complementation of the op1 mutation in yeast. J Biol Chem. 1982, 257: 2097-2103.
Baker A, Leaver CJ: Isolation and sequence analysis of a cDNA encoding the ATP/ADP translocator of Zea mays L. Nucleic Acids Res. 1985, 13: 5857-5867.
Dörner A, Olesch M, Giessen S, Pauschinger M, Schultheiss HP: Transcription of the adenine nucleotide translocase isoforms in various types of tissues in the rat. Biochim Biophys Acta. 1999, 1417: 16-24. 10.1016/S0005-2736(98)00245-4.
Levy SE, Chen YS, Graham BH, Wallace DC: Expression and sequence analysis of the mouse adenine nucleotide translocase 1 and 2 genes. Gene. 2000, 254: 57-66. 10.1016/S0378-1119(00)00252-3.
Lunardi J, Hurko O, Engel WK, Attardi G: The multiple ADP/ATP translocase genes are differentially expressed during human muscle development. J Biol Chem. 1992, 267: 15267-15270.
Stepien G, Torroni A, Chung AB, Hodge JA, Wallace DC: Differential expression of adenine nucleotide translocator isoforms in mammalian tissues and during muscle cell differentiation. J Biol Chem. 1992, 267: 14592-14597.
Chung AB, Stepien G, Haraguchi Y, Li K, Wallace DC: Transcriptional control of nuclear genes for the mitochondrial muscle ADP/ATP translocator and the ATP synthase beta subunit. Multiple factors interact with the OXBOX/REBOX promoter sequences. J Biol Chem. 1992, 267: 21154-21161.
Li K, Hodge JA, Wallace DC: OXBOX, a positive transcriptional element of the heart-skeletal muscle ADP/ATP translocator gene. J Biol Chem. 1990, 265: 20585-20588.
Too CK, Giles A, Wilkinson M: Estrogen stimulates expression of adenine nucleotide translocator ANT1 messenger RNA in female rat hearts. Mol Cell Endocrinol. 1999, 150: 161-167. 10.1016/S0303-7207(99)00002-7.
Law SW, Apostolakis EM, Samora PJ, O'Malley BW, Clark JH: Hormonal regulation of hypothalamic gene expression: identification of multiple novel estrogen induced genes. J Steroid Biochem Mol Biol. 1994, 51: 131-136. 10.1016/0960-0760(94)90085-X.
Massagué J: TGF-beta signal transduction. Annu Rev Biochem. 1998, 67: 753-791. 10.1146/annurev.biochem.67.1.753.
Hartsough MT, Mulder KM: Transforming growth factor-beta signaling in epithelial cells. Pharmacol Ther. 1997, 75: 21-41. 10.1016/S0163-7258(97)00020-X.
Mulder KM: Role of Ras and Mapks in TGFbeta signaling. Cytokine Growth Factor Rev. 2000, 11: 23-35. 10.1016/S1359-6101(99)00026-X.
Yakymovych I, Ten Dijke P, Heldin CH, Souchelnytskyi S: Regulation of Smad signaling by protein kinase C. Faseb J. 2001, 15: 553-555.
Itoh S, Itoh F, Goumans MJ, Ten Dijke P: Signaling of transforming growth factor-beta family members through Smad proteins. Eur J Biochem. 2000, 267: 6954-6967. 10.1046/j.1432-1327.2000.01828.x.
Pardali K, Kurisaki A, Moren A, ten Dijke P, Kardassis D, Moustakas A: Role of Smad proteins and transcription factor Sp1 in p21(Waf1/Cip1) regulation by transforming growth factor-beta. J Biol Chem. 2000, 275: 29244-29256. 10.1074/jbc.M909467199.
Moustakas A, Kardassis D: Regulation of the human p21/WAF1/Cip1 promoter in hepatic cells by functional interactions between Sp1 and Smad family members. Proc Natl Acad Sci U S A. 1998, 95: 6733-6738. 10.1073/pnas.95.12.6733.
Lai CF, Feng X, Nishimura R, Teitelbaum SL, Avioli LV, Ross FP, Cheng SL: Transforming growth factor-beta up-regulates the beta 5 integrin subunit expression via Sp1 and Smad signaling. J Biol Chem. 2000, 275: 36400-36406. 10.1074/jbc.M002131200.
Inagaki Y, Nemoto T, Nakao A, Dijke Pt, Kobayashi K, Takehara K, Greenwel P: Interaction between GC box binding factors and Smad proteins modulates cell lineage-specific alpha 2(I) collagen gene transcription. J Biol Chem. 2001, 276: 16573-16579. 10.1074/jbc.M010485200.
Datta PK, Blake MC, Moses HL: Regulation of plasminogen activator inhibitor-1 expression by transforming growth factor-beta -induced physical and functional interactions between smads and Sp1. J Biol Chem. 2000, 275: 40014-40019. 10.1074/jbc.C000508200.
Krohn K, Rozovsky I, Wals P, Teter B, Anderson CP, Finch CE: Glial fibrillary acidic protein transcription responses to transforming growth factor-beta1 and interleukin-1beta are mediated by a nuclear factor-1-like site in the near-upstream promoter. J Neurochem. 1999, 72: 1353-1361. 10.1046/j.1471-4159.1999.721353.x.
Docagne F, Nicole O, Marti HH, MacKenzie ET, Buisson A, Vivien D: Transforming growth factor-beta1 as a regulator of the serpins/t-PA axis in cerebral ischemia. Faseb J. 1999, 13: 1315-1324.
Ihn H, LeRoy EC, Trojanowska M: Oncostatin M stimulates transcription of the human alpha2(I) collagen gene via the Sp1/Sp3-binding site. J Biol Chem. 1997, 272: 24666-24672. 10.1074/jbc.272.39.24666.
Tone M, Powell MJ, Tone Y, Thompson SA, Waldmann H: IL-10 gene expression is controlled by the transcription factors Sp1 and Sp3. J Immunol. 2000, 165: 286-291.
Treichel JA, Reddington M, Kreutzberg GW: Regulation of plasminogen activator inhibitor-1 mRNA accumulation by basic fibroblast growth factor and transforming growth factor-beta1 in cultured rat astrocytes. J Neurochem. 1998, 71: 1944-1952.
Poncelet AC, Schnaper HW: Sp1 and Smad proteins cooperate to mediate transforming growth factor- beta 1-induced alpha 2(I) collagen expression in human glomerular mesangial cells. J Biol Chem. 2001, 276: 6983-6992. 10.1074/jbc.M006442200.
Zhang W, Ou J, Inagaki Y, Greenwel P, Ramirez F: Synergistic cooperation between Sp1 and Smad3/Smad4 mediates transforming growth factor beta1 stimulation of alpha 2(I)-collagen (COL1A2) transcription. J Biol Chem. 2000, 275: 39237-39245. 10.1074/jbc.M003339200.
Feng XH, Lin X, Derynck R: Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15(Ink4B) transcription in response to TGF-beta. Embo J. 2000, 19: 5178-5193. 10.1093/emboj/19.19.5178.
Massagué J, Chen YG: Controlling TGF-beta signaling [In Process Citation]. Genes Dev. 2000, 14: 627-644.
Satoh M, Sugino H, Yoshida T: Activin promotes astrocytic differentiation of a multipotent neural stem cell line and an astrocyte progenitor cell line from murine central nervous system. Neurosci Lett. 2000, 284: 143-146. 10.1016/S0304-3940(00)00981-2.
Hoodless PA, Haerry T, Abdollah S, Stapleton M, O'Connor MB, Attisano L, Wrana JL: MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell. 1996, 85: 489-500. 10.1016/S0092-8674(00)81250-7.
Jayaraman L, Massagué J: Distinct oligomeric states of SMAD proteins in the transforming growth factor-beta pathway. J Biol Chem. 2000, 275: 40710-40717. 10.1074/jbc.M005799200.
Pratt BM, McPherson JM: TGF-beta in the central nervous system: potential roles in ischemic injury and neurodegenerative diseases. Cytokine Growth Factor Rev. 1997, 8: 267-292. 10.1016/S1359-6101(97)00018-X.
Flanders KC, Ren RF, Lippa CF: Transforming growth factor-betas in neurodegenerative disease. Prog Neurobiol. 1998, 54: 71-85. 10.1016/S0301-0082(97)00066-X.
Rich JN, Zhang M, Datto MB, Bigner DD, Wang XF: Transforming growth factor-beta-mediated p15(INK4B) induction and growth inhibition in astrocytes is SMAD3-dependent and a pathway prominently altered in human glioma cell lines. J Biol Chem. 1999, 274: 35053-35058. 10.1074/jbc.274.49.35053.
Amara FM, Junaid A, Clough RR, Liang B: TGF-beta(1), regulation of alzheimer amyloid precursor protein mRNA expression in a normal human astrocyte cell line: mRNA stabilization. Brain Res Mol Brain Res. 1999, 71: 42-49. 10.1016/S0169-328X(99)00158-8.
Reilly JF, Maher PA, Kumari VG: Regulation of astrocyte GFAP expression by TGF-beta1 and FGF-2. Glia. 1998, 22: 202-210. 10.1002/(SICI)1098-1136(199802)22:2<202::AID-GLIA11>3.0.CO;2-1.
Laping NJ, Morgan TE, Nichols NR, Rozovsky I, Young-Chan CS, Zarow C, Finch CE: Transforming growth factor-beta 1 induces neuronal and astrocyte genes: tubulin alpha 1, glial fibrillary acidic protein and clusterin. Neuroscience. 1994, 58: 563-572. 10.1016/0306-4522(94)90081-7.
Silberstein FC, De Simone R, Levi G, Aloisi F: Cytokine-regulated expression of platelet-derived growth factor gene and protein in cultured human astrocytes. J Neurochem. 1996, 66: 1409-1417.
Faber-Elman A, Solomon A, Abraham JA, Marikovsky M, Schwartz M: Involvement of wound-associated factors in rat brain astrocyte migratory response to axonal injury: in vitro simulation. J Clin Invest. 1996, 97: 162-171.
Buisson A, Nicole O, Docagne F, Sartelet H, Mackenzie ET, Vivien D: Up-regulation of a serine protease inhibitor in astrocytes mediates the neuroprotective activity of transforming growth factor beta1. Faseb J. 1998, 12: 1683-1691.
Asher RA, Morgenstern DA, Fidler PS, Adcock KH, Oohira A, Braistead JE, Levine JM, Margolis RU, Rogers JH, Fawcett JW: Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. J Neurosci. 2000, 20: 2427-2438.
Rauch U, Grimpe B, Kulbe G, Arnold-Ammer I, Beier DR, Fassler R: Structure and chromosomal localization of the mouse neurocan gene. Genomics. 1995, 28: 405-410. 10.1006/geno.1995.1168.
Eddleston M, Mucke L: Molecular profile of reactive astrocytes--implications for their role in neurologic disease. Neuroscience. 1993, 54: 15-36. 10.1016/0306-4522(93)90380-X.
Gomes FC, Paulin D, Moura Neto V: Glial fibrillary acidic protein (GFAP): modulation by growth factors and its implication in astrocyte differentiation. Braz J Med Biol Res. 1999, 32: 619-631.
Giraud S, Bonod-Bidaud C, Wesolowski-Louvel M, Stepien G: Expression of human ANT2 gene in highly proliferative cells: GRBOX, a new transcriptional element, is involved in the regulation of glycolytic ATP import into mitochondria. J Mol Biol. 1998, 281: 409-418. 10.1006/jmbi.1998.1955.
Luciakova K, Hodny Z, Barath P, Nelson BD: In vivo mapping of the human adenine nucleotide translocator-2 (ANT2) promoter provides support for regulation by a pair of proximal Sp1- activating sites and an upstream silencer element. Biochem J. 2000, 352 Pt 2: 519-523. 10.1042/0264-6021:3520519.
McKeon RJ, Hoke A, Silver J: Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Exp Neurol. 1995, 136: 32-43. 10.1006/exnr.1995.1081.
Rudge JS, Smith GM, Silver J: An in vitro model of wound healing in the CNS: analysis of cell reaction and interaction at different ages. Exp Neurol. 1989, 103: 1-16. 10.1016/0014-4886(89)90180-5.
Chomczynski P, Sacchi N: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987, 162: 156-159. 10.1006/abio.1987.9999.
Ibrahim NM, Marinovic AC, Price SR, Young LG, Frohlich O: Pitfall of an internal control plasmid: response of Renilla luciferase (pRL-TK) plasmid to dihydrotestosterone and dexamethasone. Biotechniques. 2000, 29: 782-784.