Data Learning: Integrating Data Assimilation and Machine Learning

Journal of Computational Science - Tập 58 - Trang 101525 - 2022
Caterina Buizza1, César Quilodrán Casas2, Philip Nadler2, Julian Mack2, Stefano Marrone2,3, Zainab Titus4, Clémence Le Cornec5, Evelyn Heylen6, Tolga Dur2, Luis Baca Ruiz2,7, Claire Heaney4, Julio Amador Díaz Lopez2,8, K.S. Sesh Kumar2, Rossella Arcucci2,4
1Personal Robotics Lab, Department of EEE, Imperial College London, UK
2Data Science Institute, Imperial College London, UK
3DIETI, University of Naples “Federico II”, Italy
4Department of Earth Science and Engineering, Imperial College, London, UK
5Department of Civil and Environmental Engineering, Imperial College, London, UK
6Control and Power Group, Department of EEE, Imperial College London, UK
7Department of Computer Science and Artificial Intelligence, University of Granada, Spain
8Data Science Intitute, London School of Economics and Political Science, UK

Tài liệu tham khảo

Arcucci, 2019, Optimal reduced space for variational data assimilation, J. Comput. Phys., 379, 51, 10.1016/j.jcp.2018.10.042

Arcucci, 2020, Neural assimilation, International Conference on Computational Science, 155

Arcucci, 2021, Deep data assimilation: integrating deep learning with data assimilation, Appl. Sci., 11, 1114, 10.3390/app11031114

Asch, 2016

Bishop, 2006

Bocquet, 2020, Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation-maximization, Found. Data Sci., 2, 55, 10.3934/fods.2020004

Bonavita, 2014

Boukabara, 2019, Leveraging modern artificial intelligence for remote sensing and nwp: benefits and challenges, Bull. Am. Meteorol. Soc., 10.1175/BAMS-D-18-0324.1

Brajard, 2020

Cacuci, 2005

Chao, 2019, Recent advances in supervised dimension reduction: a survey, Mach. Learn. Knowl. Extract., 1, 341, 10.3390/make1010020

Courtier, 1994, A strategy for operational implementation of 4d-var, using an incremental approach, Q. J. R. Meteorol. Soc., 120, 1367, 10.1002/qj.49712051912

Düben, 2021

Dueben, 2018, Challenges and design choices for global weather and climate models based on machine learning, Geosci. Model Dev., 11, 3999, 10.5194/gmd-11-3999-2018

Emerick, 2018, Deterministic ensemble smoother with multiple data assimilation as an alternative for history-matching seismic data, Comput. Geosci., 22, 1175, 10.1007/s10596-018-9745-5

Fei-Fei, 2006, One-shot learning of object categories, IEEE Trans. Pattern Anal. Mach. Intell., 28, 594, 10.1109/TPAMI.2006.79

Geer, 2021, Learning earth system models from observations: machine learning or data assimilation?, Philos. Trans. R. Soc. A, 379, 10.1098/rsta.2020.0089

Geer, 2020

Goodfellow, 2016

Heaney, 2018

Hesthaven, 2018, Non-intrusive reduced order modeling of nonlinear problems using neural networks, J. Comput. Phys., 363, 55, 10.1016/j.jcp.2018.02.037

Kalman, 1960, A new approach to linear filtering and prediction problems, J. Basic Eng., 82, 35, 10.1115/1.3662552

Kalnay, 2003

Khandelwal, 2020, A scalable inference method for large dynamic economic systems, NeuRIPS ML for Economic Policy Workshop

Lorenc, 1997, Development of an operational variational assimilation scheme, J. Meteorol. Soc. Jpn., 75, 339, 10.2151/jmsj1965.75.1B_339

Ma, 2020

Mosser, 2019

Nichols, 2010

Ning, 2019

Perdikaris, 2017, Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling, Proc. R. Soc. A: Math. Phys. Eng. Sci., 473, 20160751, 10.1098/rspa.2016.0751

Quilodrán Casas, 2018

Rasheed, 2019

Rasmussen, 2005

Shannon, 1948, A mathematical theory of communication, Bell Syst. Techn. J., 27, 379, 10.1002/j.1538-7305.1948.tb01338.x

Skitka, 2020, Reduced-order quasilinear model of ocean boundary-layer turbulence, J. Phys. Oceanogr., 50, 537, 10.1175/JPO-D-19-0149.1

Smith, 2009, Variational data assimilation for parameter estimation: application to a simple morphodynamic model, Ocean Dyn., 59, 697, 10.1007/s10236-009-0205-6

Tofts, 1999, Estimating kinetic parameters from dynamic contrast-enhanced t 1-weighted mri of a diffusable tracer: standardized quantities and symbols, J. Magn. Reson. Imaging, 10, 223, 10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S

Weinan, 2017, A proposal on machine learning via dynamical systems, Commun. Math. Stat., 5, 1, 10.1007/s40304-017-0103-z

Van der Wilk, 2017

Yu, 2020

Zhu, 1997, Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale bound-constrained optimization, ACM Trans. Math. Softw., 23, 550, 10.1145/279232.279236

Zhu, 2019, Model error correction in data assimilation by integrating neural networks, Big Data Mining Anal., 2, 83, 10.26599/BDMA.2018.9020033