Data Learning: Integrating Data Assimilation and Machine Learning
Tài liệu tham khảo
Arcucci, 2019, Optimal reduced space for variational data assimilation, J. Comput. Phys., 379, 51, 10.1016/j.jcp.2018.10.042
Arcucci, 2020, Neural assimilation, International Conference on Computational Science, 155
Arcucci, 2021, Deep data assimilation: integrating deep learning with data assimilation, Appl. Sci., 11, 1114, 10.3390/app11031114
Asch, 2016
Bishop, 2006
Bocquet, 2020, Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation-maximization, Found. Data Sci., 2, 55, 10.3934/fods.2020004
Bonavita, 2014
Boukabara, 2019, Leveraging modern artificial intelligence for remote sensing and nwp: benefits and challenges, Bull. Am. Meteorol. Soc., 10.1175/BAMS-D-18-0324.1
Brajard, 2020
Cacuci, 2005
Chao, 2019, Recent advances in supervised dimension reduction: a survey, Mach. Learn. Knowl. Extract., 1, 341, 10.3390/make1010020
Courtier, 1994, A strategy for operational implementation of 4d-var, using an incremental approach, Q. J. R. Meteorol. Soc., 120, 1367, 10.1002/qj.49712051912
Düben, 2021
Dueben, 2018, Challenges and design choices for global weather and climate models based on machine learning, Geosci. Model Dev., 11, 3999, 10.5194/gmd-11-3999-2018
Emerick, 2018, Deterministic ensemble smoother with multiple data assimilation as an alternative for history-matching seismic data, Comput. Geosci., 22, 1175, 10.1007/s10596-018-9745-5
Fei-Fei, 2006, One-shot learning of object categories, IEEE Trans. Pattern Anal. Mach. Intell., 28, 594, 10.1109/TPAMI.2006.79
Geer, 2021, Learning earth system models from observations: machine learning or data assimilation?, Philos. Trans. R. Soc. A, 379, 10.1098/rsta.2020.0089
Geer, 2020
Goodfellow, 2016
Heaney, 2018
Hesthaven, 2018, Non-intrusive reduced order modeling of nonlinear problems using neural networks, J. Comput. Phys., 363, 55, 10.1016/j.jcp.2018.02.037
Kalman, 1960, A new approach to linear filtering and prediction problems, J. Basic Eng., 82, 35, 10.1115/1.3662552
Kalnay, 2003
Khandelwal, 2020, A scalable inference method for large dynamic economic systems, NeuRIPS ML for Economic Policy Workshop
Lorenc, 1997, Development of an operational variational assimilation scheme, J. Meteorol. Soc. Jpn., 75, 339, 10.2151/jmsj1965.75.1B_339
Ma, 2020
Mosser, 2019
Nichols, 2010
Ning, 2019
Perdikaris, 2017, Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling, Proc. R. Soc. A: Math. Phys. Eng. Sci., 473, 20160751, 10.1098/rspa.2016.0751
Quilodrán Casas, 2018
Rasheed, 2019
Rasmussen, 2005
Shannon, 1948, A mathematical theory of communication, Bell Syst. Techn. J., 27, 379, 10.1002/j.1538-7305.1948.tb01338.x
Skitka, 2020, Reduced-order quasilinear model of ocean boundary-layer turbulence, J. Phys. Oceanogr., 50, 537, 10.1175/JPO-D-19-0149.1
Smith, 2009, Variational data assimilation for parameter estimation: application to a simple morphodynamic model, Ocean Dyn., 59, 697, 10.1007/s10236-009-0205-6
Tofts, 1999, Estimating kinetic parameters from dynamic contrast-enhanced t 1-weighted mri of a diffusable tracer: standardized quantities and symbols, J. Magn. Reson. Imaging, 10, 223, 10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S
Vinyals, 2016, Matching networks for one shot learning, Adv. Neural Inform. Process. Syst., 29, 3630
Weinan, 2017, A proposal on machine learning via dynamical systems, Commun. Math. Stat., 5, 1, 10.1007/s40304-017-0103-z
Van der Wilk, 2017
Yu, 2020
Zhu, 1997, Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale bound-constrained optimization, ACM Trans. Math. Softw., 23, 550, 10.1145/279232.279236