Attention-based Convolutional Autoencoders for 3D-Variational Data Assimilation
Tài liệu tham khảo
Met. Office, 2019, 1
Arcucci, 2017, On the variational data assimilation problem solving and sensitivity analysis, J. Comput. Phys., 335, 311, 10.1016/j.jcp.2017.01.034
Arcucci, 2018, Toward a preconditioned scalable 3dvar for assimilating sea surface temperature collected into the Caspian sea, J. Numer. Anal. Ind. Appl. Math., 12, 9
Vincent, 2008, Extracting and composing robust features with denoising autoencoders, 1096
Lore, 2017, LLNet: A deep autoencoder approach to natural low-light image enhancement, Pattern Recognit., 61, 650, 10.1016/j.patcog.2016.06.008
L. Theis, W. Shi, A. Cunningham, F. Huszár, Lossy image compression with compressive autoencoders, in: 5th International Conference on Learning Representations, ICLR 2017, Conference Track Proceedings, Toulon, France, 2017, arXiv:1703.00395.
Ballé, 2018
Tribbia, 2004, Scale interactions and atmospheric predictability: An updated perspective, Mon. Weather Rev., 132, 703, 10.1175/1520-0493(2004)132<0703:SIAAPA>2.0.CO;2
Lorenc, 1986, Analysis methods of numerical weather prediction, Q. J. R. Meteorol. Soc., 112, 1177, 10.1002/qj.49711247414
Lorenc, 1988, Optimal nonlinear objective analysis, Q. J. R. Meteorol. Soc., 114, 205, 10.1002/qj.49711447911
Courtier, 1994, A strategy for operational implementation of 4D-Var, using an incremental approach, Q. J. R. Meteorol. Soc., 120, 1367, 10.1002/qj.49712051912
Courtier, 1998, The ECMWF implementation of three-dimensional variational assimilation (3D-var). I: Formulation, Q. J. R. Meteorol. Soc., 124, 1783
Huang, 2004, A three-dimensional variational data assimilation system for MM5: implementation and initial results, Mon. Weather Rev., 132, 897, 10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2
Evensen, 2003, The ensemble Kalman filter: Theoretical formulation and practical implementation, Ocean Dyn., 53, 343, 10.1007/s10236-003-0036-9
Dobricic, 2008, An oceanographic three-dimensional variational data assimilation scheme, Ocean Model., 22, 89, 10.1016/j.ocemod.2008.01.004
Lang, 2019, A variational approach to data assimilation in the solar wind, Space Weather, 17, 59, 10.1029/2018SW001857
Arcucci, 2019, Optimal reduced space for variational data assimilation, J. Comput. Phys., 379, 51, 10.1016/j.jcp.2018.10.042
Arcucci, 2018, Effective variational data assimilation in air-pollution prediction, Big Data Min. Anal., 1, 297, 10.26599/BDMA.2018.9020025
Parrish, 1992
L. Zhou, Z. Sun, X. Wu, J. Wu, End-to-end optimized image compression with attention mechanism, in: The IEEE Conference on Computer Vision and Pattern Recognition, CVPR Workshops, Long Beach, CA, USA, 2019.
D.-W. Kim, J.R. Chung, S.-W. Jung, GRDN: Grouped residual dense network for real image denoising and GAN-based real-world noise modeling, in: The IEEE Conference on Computer Vision and Pattern Recognition, CVPR Workshops, Long Beach, CA, USA, 2019, pp. 2086–2094, http://arxiv.org/abs/1905.11172.
He, 2016, Deep residual learning for image recognition, 770
S. Xie, R. Girshick, P. Dollár, Z. Tu, K. He, Aggregated residual transformations for deep neural networks, in: Proc. 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, USA, 2017, pp. 5987–5995, http://dx.doi.org/10.1109/CVPR.2017.634.
Bannister, 2017, A review of operational methods of variational and ensemble-variational data assimilation, Q. J. R. Meteorol. Soc., 143, 607, 10.1002/qj.2982
Zupanski, 1997, A general weak constraint applicable to operational 4DVAR data assimilation systems, Mon. Weather Rev., 125, 2274, 10.1175/1520-0493(1997)125<2274:AGWCAT>2.0.CO;2
Chai, 2007, Four-dimensional data assimilation experiments with international consortium for atmospheric research on transport and transformation ozone measurements, J. Geophys. Res. Atmos., 112, 1
Cheng, 2010, A hybrid approach to estimating error covariances in variational data assimilation, Tellus A, 62, 1, 10.1111/j.1600-0870.2010.00442.x
Lorenz, 1956
Rumelhart, 1986, Learning internal representations by error propagation, 318
Baldi, 1989, Neural networks and principal component analysis: Learning from examples without local minima, Neural Netw., 2, 53, 10.1016/0893-6080(89)90014-2
P. Baldi, Autoencoders, unsupervised learning and deep architectures, in: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, Proceedings of Machine Learning Research, vol. 27, Washington, USA, 2012, pp. 37–49, http://proceedings.mlr.press/v27/baldi12a.html.
M. Lu, T. Chen, H. Liu, Z. Ma, Learned image restoration for VVC Intra Coding, in: The IEEE Conference on Computer Vision and Pattern Recognition, CVPR Workshops, Long Beach, CA, USA, 2019.
Sakurada, 2014, Anomaly detection using autoencoders with nonlinear dimensionality reduction, 02-December, 4
Baur, 2019, Deep autoencoding models for unsupervised anomaly segmentation in brain MR images, 161
Kingma, 2013, Auto-encoding variational Bayes
Kusner, 2017, Grammar variational autoencoder, 3072
Pu, 2016, Variational autoencoder for deep learning of images, labels and captions, 2360
Goodfellow, 2017, Deep learning, Brain Neural Netw., 24, 1
Huang, 2019
Fang, 2017, An efficient goal-based reduced order model approach for targeted adaptive observations, Internat. J. Numer. Methods Fluids, 83, 263, 10.1002/fld.4265
Xiao, 2018, Parameterised non-intrusive reduced order methods for ensemble Kalman filter data assimilation, Comput. & Fluids, 177, 69, 10.1016/j.compfluid.2018.10.006
Wang, 2018, Model identification of reduced order fluid dynamics systems using deep learning, Internat. J. Numer. Methods Fluids, 86, 255, 10.1002/fld.4416
van der Merwe, 2007, Fast neural network surrogates for very high dimensional physics-based models in computational oceanography, Neural Netw., 20, 462, 10.1016/j.neunet.2007.04.023
Wang, 2016, Deep learning-based model reduction for distributed parameter systems, IEEE Trans. Syst. Man Cybern. A, 46, 1664, 10.1109/TSMC.2016.2605159
Loh, 2018
Sutskever, 2014, Sequence to sequence learning with neural networks, vol. 2, 3104
F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, L. Van Gool, Practical full resolution learned lossless image compression, in: The IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Long Beach, CA, USA, 2019, pp. 10629–10638, http://arxiv.org/abs/1811.12817.
M. Li, W. Zuo, S. Gu, D. Zhao, D. Zhang, Learning convolutional networks for content-weighted image compression, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018, pp. 3214–3223, http://dx.doi.org/10.1109/CVPR.2018.00339.
L. Zhou, C. Cai, Y. Gao, S. Su, J. Wu, Variational autoencoder for low bit-rate image compression, in: The IEEE Conference on Computer Vision and Pattern Recognition, CVPR Workshops, Salt Lake City, USA, 2018, pp. 2617–2620.
Z. Chen, Y. Li, F. Liu, Z. Liu, X. Pan, W. Sun, Y. Wang, Y. Zhou, H. Zhu, S. Liu, CNN-Optimized image compression with uncertainty based resource allocation, in: The IEEE Conference on Computer Vision and Pattern Recognition, CVPR Workshops, Salt Lake City, USA, 2018, pp. 2559–2562.
Y. Fan, J. Yu, T.S. Huang, Wide-activated Deep residual networks based restoration for BPG-compressed images, in: The IEEE Conference on Computer Vision and Pattern Recognition, CVPR Workshops, Salt Lake City, USA, 2018, pp. 2621–2624.
S. Cho, J. Lee, J. Kim, Y. Kim, D.-W. Kim, J.R. Chung, S.-W. Jung, Low bit-rate image compression based on post-processing with grouped residual dense network, in: The IEEE Conference on Computer Vision and Pattern Recognition, CVPR Workshops, Long Beach, CA, USA, 2019.
J. Zhou, S. Wen, A. Nakagawa, K. Kazui, Z. Tan, Multi-scale and context-adaptive entropy model for image compression, in: IEEE International Conference on Computer Vision and Pattern Recognition, 2019, pp. 4321–4324.
M. Li, C. Xia, J. Hu, Z. Huang, Y. Zhang, D. Chen, J. Zan, G. Li, J. Nie, VimicroABCnet: An image coder combining a better color space conversion algorithm and a post enhancing network, in: The IEEE Conference on Computer Vision and Pattern Recognition, CVPR Workshops, Long Beach, CA, USA, 2019.
Bahdanau, 2014
J. Ballé, V. Laparra, E.P. Simoncelli, Density modeling of images using a generalized normalization transformation, in: Y. Bengio, Y. LeCun (Eds.), Procs. 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, 2016, http://arxiv.org/abs/1511.06281.
Ronneberger, 2015, U-net: Convolutional networks for biomedical image segmentation, vol. 9351, 234
Zhang, 2020, Residual dense network for image restoration, IEEE Trans. Pattern Anal. Mach. Intell.
Woo, 2018, CBAM: Convolutional block attention module, 3
Y. Zhang, K. Li, K. Li, B. Zhong, Y. Fu, Residual non-local attention networks for image restoration, in: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, USA, 2019, arXiv:1903.10082.
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proc. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015, pp. 1–9, http://dx.doi.org/10.1109/CVPR.2015.7298594.
F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, L.V. Gool, Conditional probability models for deep image compression, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018, pp. 4394–4402, http://dx.doi.org/10.1109/CVPR.2018.00462.
Cheng, 2018, Deep convolutional autoencoder-based lossy image compression, 253
Versatile video coding reference software version 4.0 (VTM-4.0).
Doersch, 2016
Montmerle, 2018, A 3D ensemble variational data assimilation scheme for the limited-area AROME model: Formulation and preliminary results, Q. J. R. Meteorol. Soc., 144, 2196, 10.1002/qj.3334
Hansen, 2006, 1
Lorenc, 2018, A comparison of hybrid variational data assimilation methods for global NWP, Q. J. R. Meteorol. Soc., 144, 2748, 10.1002/qj.3401
Cline, 2017, Computation of the singular value decomposition
Liu, 2018, Ensemble-based seismic history matching with data re-parameterization using convolutional autoencoder, 3156
Quilodran Casas, 2019, Fast ocean data assimilation using a neural-network reduced-space regional ocean model of the North Brazil current, Prog. Oceanogr.
J.T. Springenberg, A. Dosovitskiy, T. Brox, M. Riedmiller, Striving for simpli: the all convolutional net, in: 3rd International Conference on Learning Representations, ICLR 2015, Workshop Track, San Diego, CA, USA, 2015, pp. 1–14, arXiv:1412.6806v3.
Krizhevsky, 2012, Imagenet classification with deep convolutional neural networks, 1097
Simonyan, 2015
Hinton, 2010, Rectified linear units improve restricted Boltzmann machines, 807
He, 2015, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, 1026
Aristodemou, 2019, Enhancing CFD-LES air pollution prediction accuracy using data assimilation, Build. Environ., 165, 10.1016/j.buildenv.2019.106383
J. Tompson, R. Goroshin, A. Jain, Y. LeCun, C. Bregler, Efficient object localization using convolutional networks, in: Proc. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015, pp. 648–656, http://dx.doi.org/10.1109/CVPR.2015.7298664.
Ma, 2018, End-to-end blind image quality assessment using deep neural networks, IEEE Trans. Image Process., 27, 1202, 10.1109/TIP.2017.2774045
Lacey, 2018
Zhang, 2015, Optimizing FPGA-based accelerator design for deep convolutional neural networks, 161
B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, D. Kalenichenko, Quantization and training of neural networks for efficient integer-arithmetic-only inference, in: Proc. IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018, pp. 2704–2713, http://dx.doi.org/10.1109/CVPR.2018.00286.
Li, 2016
Bellec, 2018, Deep rewiring: Training very sparse deep networks
S. Han, H. Mao, W.J. Dally, Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding, in: Y. Bengio, Y. LeCun (Eds.), Procs. 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, 2016, http://arxiv.org/abs/1510.00149.
Shi, 2016, Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network, 1874
Wang, 2018, Factorized convolutional neural networks, 545
G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Proc. 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, USA, 2017, pp. 2261–2269, http://dx.doi.org/10.1109/CVPR.2017.243.