Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations

Journal of Computational Physics - Tập 378 - Trang 686-707 - 2019
M. Raissi1, P. Perdikaris2, G.E. Karniadakis1
1Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
2Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania, Philadelphia, Pa., 19104 USA

Tài liệu tham khảo

Krizhevsky, 2012, Imagenet classification with deep convolutional neural networks, 1097 Lake, 2015, Human-level concept learning through probabilistic program induction, Science, 350, 1332, 10.1126/science.aab3050 Alipanahi, 2015, Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning, Nat. Biotechnol., 33, 831, 10.1038/nbt.3300 Raissi, 2017, Inferring solutions of differential equations using noisy multi-fidelity data, J. Comput. Phys., 335, 736, 10.1016/j.jcp.2017.01.060 Raissi, 2017, Machine learning of linear differential equations using Gaussian processes, J. Comput. Phys., 348, 683, 10.1016/j.jcp.2017.07.050 Owhadi, 2015, Bayesian numerical homogenization, Multiscale Model. Simul., 13, 812, 10.1137/140974596 Rasmussen, 2006 Raissi Raissi Owhadi, 2015, Brittleness of Bayesian inference under finite information in a continuous world, Electron. J. Stat., 9, 1, 10.1214/15-EJS989 Hornik, 1989, Multilayer feedforward networks are universal approximators, Neural Netw., 2, 359, 10.1016/0893-6080(89)90020-8 Baydin Basdevant, 1986, Spectral and finite difference solutions of the Burgers equation, Comput. Fluids, 14, 23, 10.1016/0045-7930(86)90036-8 Rudy, 2017, Data-driven discovery of partial differential equations, Sci. Adv., 3, 10.1126/sciadv.1602614 Lagaris, 1998, Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Netw., 9, 987, 10.1109/72.712178 Psichogios, 1992, A hybrid neural network-first principles approach to process modeling, AIChE J., 38, 1499, 10.1002/aic.690381003 Wang Zhu Hagge Tripathy Vlachas Parish, 2016, A paradigm for data-driven predictive modeling using field inversion and machine learning, J. Comput. Phys., 305, 758, 10.1016/j.jcp.2015.11.012 Duraisamy, 2018, New approaches in turbulence and transition modeling using data-driven techniques, 1284 Ling, 2016, Reynolds averaged turbulence modelling using deep neural networks with embedded invariance, J. Fluid Mech., 807, 155, 10.1017/jfm.2016.615 Zhang, 2015, Machine learning methods for data-driven turbulence modeling, 2460 Milano, 2002, Neural network modeling for near wall turbulent flow, J. Comput. Phys., 182, 1, 10.1006/jcph.2002.7146 Perdikaris, 2016, Multifidelity information fusion algorithms for high-dimensional systems and massive data sets, SIAM J. Sci. Comput., 38, B521, 10.1137/15M1055164 Rico-Martinez, 1994, Continuous-time nonlinear signal processing: a neural network based approach for gray box identification, 596 Ling, 2015, Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty, Phys. Fluids, 27, 10.1063/1.4927765 Lin, 2017, Why does deep and cheap learning work so well?, J. Stat. Phys., 168, 1223, 10.1007/s10955-017-1836-5 Kondor Kondor Hirn, 2017, Wavelet scattering regression of quantum chemical energies, Multiscale Model. Simul., 15, 827, 10.1137/16M1075454 Mallat, 2016, Understanding deep convolutional networks, Philos. Trans. R. Soc. A, 374, 10.1098/rsta.2015.0203 Liu, 1989, On the limited memory BFGS method for large scale optimization, Math. Program., 45, 503, 10.1007/BF01589116 Goodfellow, 2016 Kingma A. Choromanska, M. Henaff, M. Mathieu, G.B. Arous, Y. LeCun, The loss surfaces of multilayer networks, in: Artificial Intelligence and Statistics, pp. 192–204. Shwartz-Ziv Driscoll, 2014 Stein, 1987, Large sample properties of simulations using Latin hypercube sampling, Technometrics, 29, 143, 10.1080/00401706.1987.10488205 Snoek, 2012, Practical bayesian optimization of machine learning algorithms, 2951 Bungartz, 2004, Sparse grids, Acta Numer., 13, 147, 10.1017/S0962492904000182 Sloan, 1998, When are quasi-Monte Carlo algorithms efficient for high dimensional integrals?, J. Complex., 14, 1, 10.1006/jcom.1997.0463 Iserles, 2009 Von Kármán, 1963 Karniadakis, 2013 Dauxois Abadi Brunton, 2016, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proc. Natl. Acad. Sci., 113, 3932, 10.1073/pnas.1517384113