Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
Tài liệu tham khảo
Krizhevsky, 2012, Imagenet classification with deep convolutional neural networks, 1097
Lake, 2015, Human-level concept learning through probabilistic program induction, Science, 350, 1332, 10.1126/science.aab3050
Alipanahi, 2015, Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning, Nat. Biotechnol., 33, 831, 10.1038/nbt.3300
Raissi, 2017, Inferring solutions of differential equations using noisy multi-fidelity data, J. Comput. Phys., 335, 736, 10.1016/j.jcp.2017.01.060
Raissi, 2017, Machine learning of linear differential equations using Gaussian processes, J. Comput. Phys., 348, 683, 10.1016/j.jcp.2017.07.050
Owhadi, 2015, Bayesian numerical homogenization, Multiscale Model. Simul., 13, 812, 10.1137/140974596
Rasmussen, 2006
Raissi
Raissi
Owhadi, 2015, Brittleness of Bayesian inference under finite information in a continuous world, Electron. J. Stat., 9, 1, 10.1214/15-EJS989
Hornik, 1989, Multilayer feedforward networks are universal approximators, Neural Netw., 2, 359, 10.1016/0893-6080(89)90020-8
Baydin
Basdevant, 1986, Spectral and finite difference solutions of the Burgers equation, Comput. Fluids, 14, 23, 10.1016/0045-7930(86)90036-8
Rudy, 2017, Data-driven discovery of partial differential equations, Sci. Adv., 3, 10.1126/sciadv.1602614
Lagaris, 1998, Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Netw., 9, 987, 10.1109/72.712178
Psichogios, 1992, A hybrid neural network-first principles approach to process modeling, AIChE J., 38, 1499, 10.1002/aic.690381003
Wang
Zhu
Hagge
Tripathy
Vlachas
Parish, 2016, A paradigm for data-driven predictive modeling using field inversion and machine learning, J. Comput. Phys., 305, 758, 10.1016/j.jcp.2015.11.012
Duraisamy, 2018, New approaches in turbulence and transition modeling using data-driven techniques, 1284
Ling, 2016, Reynolds averaged turbulence modelling using deep neural networks with embedded invariance, J. Fluid Mech., 807, 155, 10.1017/jfm.2016.615
Zhang, 2015, Machine learning methods for data-driven turbulence modeling, 2460
Milano, 2002, Neural network modeling for near wall turbulent flow, J. Comput. Phys., 182, 1, 10.1006/jcph.2002.7146
Perdikaris, 2016, Multifidelity information fusion algorithms for high-dimensional systems and massive data sets, SIAM J. Sci. Comput., 38, B521, 10.1137/15M1055164
Rico-Martinez, 1994, Continuous-time nonlinear signal processing: a neural network based approach for gray box identification, 596
Ling, 2015, Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty, Phys. Fluids, 27, 10.1063/1.4927765
Lin, 2017, Why does deep and cheap learning work so well?, J. Stat. Phys., 168, 1223, 10.1007/s10955-017-1836-5
Kondor
Kondor
Hirn, 2017, Wavelet scattering regression of quantum chemical energies, Multiscale Model. Simul., 15, 827, 10.1137/16M1075454
Mallat, 2016, Understanding deep convolutional networks, Philos. Trans. R. Soc. A, 374, 10.1098/rsta.2015.0203
Liu, 1989, On the limited memory BFGS method for large scale optimization, Math. Program., 45, 503, 10.1007/BF01589116
Goodfellow, 2016
Kingma
A. Choromanska, M. Henaff, M. Mathieu, G.B. Arous, Y. LeCun, The loss surfaces of multilayer networks, in: Artificial Intelligence and Statistics, pp. 192–204.
Shwartz-Ziv
Driscoll, 2014
Stein, 1987, Large sample properties of simulations using Latin hypercube sampling, Technometrics, 29, 143, 10.1080/00401706.1987.10488205
Snoek, 2012, Practical bayesian optimization of machine learning algorithms, 2951
Bungartz, 2004, Sparse grids, Acta Numer., 13, 147, 10.1017/S0962492904000182
Sloan, 1998, When are quasi-Monte Carlo algorithms efficient for high dimensional integrals?, J. Complex., 14, 1, 10.1006/jcom.1997.0463
Iserles, 2009
Von Kármán, 1963
Karniadakis, 2013
Dauxois
Abadi
Brunton, 2016, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proc. Natl. Acad. Sci., 113, 3932, 10.1073/pnas.1517384113