Data-driven reduced order modeling for time-dependent problems
Tài liệu tham khảo
Hesthaven, 2016
Quarteroni, 2015
Rozza, 2007, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations, Arch. Comput. Methods Eng., 15, 1, 10.1007/BF03024948
Patera, 2007
Wang, 2018, Greedy non-intrusive reduced order model for fluid dynamics, AIAA J.
Liang, 2002, Proper orthogonal decomposition and its applications, part i: Theory, J. Sound Vib., 252, 527, 10.1006/jsvi.2001.4041
Haasdonk, 2008, Reduced basis method for finite volume approximations of parametrized linear evolution equations, ESAIM Math. Model. Numer. Anal., 42, 277, 10.1051/m2an:2008001
Barrault, 2004, An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations, C. R. Math., 339, 667, 10.1016/j.crma.2004.08.006
Chaturantabut, 2010, Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32, 2737, 10.1137/090766498
Negri, 2015, Efficient model reduction of parametrized systems by matrix discrete empirical interpolation, J. Comput. Phys., 303, 431, 10.1016/j.jcp.2015.09.046
Benner, 2015, A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev., 57, 483, 10.1137/130932715
Lieu, 2006, Reduced-order fluid/structure modeling of a complete aircraft configuration, Comput. Methods Appl. Mech. Engrg., 195, 5730, 10.1016/j.cma.2005.08.026
Amsallem, 2012, Nonlinear model order reduction based on local reduced-order bases, Internat. J. Numer. Methods Engrg., 92, 891, 10.1002/nme.4371
Kutz, 2016
Lassila, 2013, A reduced computational and geometrical framework for inverse problems in hemodynamics, Int. J. Numer. Methods Biomed. Eng., 29, 741, 10.1002/cnm.2559
Sartori, 2014, A reduced order model for multi-group time-dependent parametrized reactor spatial kinetics
Pitton, 2017, On the application of reduced basis methods to bifurcation problems in incompressible fluid dynamics, J. Sci. Comput., 73, 157, 10.1007/s10915-017-0419-6
Afkham, 2017, Structure preserving model reduction of parametric hamiltonian systems, SIAM J. Sci. Comput., 39, A2616, 10.1137/17M1111991
B.M. Afkham, A. Bhatt, B. Haasdonk, J.S. Hesthaven, Symplectic model-reduction with a weighted inner product. arXiv, No. 1803.07799, 2018.
Audouze, 2013, Nonintrusive reduced-order modeling of parametrized time-dependent partial differential equations, Numer. Methods Partial Differential Equations, 29, 1587, 10.1002/num.21768
Xiao, 2017, A parameterized non-intrusive reduced order model and error analysis for general time-dependent nonlinear partial differential equations and its applications, Comput. Methods Appl. Mech. Engrg., 317, 868, 10.1016/j.cma.2016.12.033
Sakellariou, 2016, Functionally pooled models for the global identification of stochastic systems under different pseudo-static operating conditions, Mech. Syst. Signal Process., 72, 785, 10.1016/j.ymssp.2015.10.018
Worden, 2014, On gaussian process narx models and their higher-order frequency response functions, 315
Avendaño-Valencia, 2017, Gaussian Process time-series models for structures under operational variability, Front. Built Environ., 3, 69, 10.3389/fbuil.2017.00069
Kopsaftopoulos, 2018, A stochastic global identification framework for aerospace structures operating under varying flight states, Mech. Syst. Signal Process., 98, 425, 10.1016/j.ymssp.2017.05.001
Mai, 2016, Surrogate modeling for stochastic dynamical systems by combining nonlinear autoregressive with exogenous input models and polynomial chaos expansions, Int. J. Uncertain. Quantif., 6, 10.1615/Int.J.UncertaintyQuantification.2016016603
Nguyen, 2015, Gaussian functional regression for linear partial differential equations, Comput. Methods Appl. Mech. Engrg., 287, 69, 10.1016/j.cma.2015.01.008
Nguyen, 2016, Gaussian functional regression for output prediction: Model assimilation and experimental design, J. Comput. Phys., 309, 52, 10.1016/j.jcp.2015.12.035
Haykin, 1999
Hesthaven, 2018, Non-intrusive reduced order modeling of nonlinear problems using neural networks, J. Comput. Phys., 363, 55, 10.1016/j.jcp.2018.02.037
Williams, 1996, Gaussian processes for regression, 514
Rasmussen, 2006
Guo, 2018, Reduced order modeling for nonlinear structural analysis using gaussian process regression, Comput. Methods Appl. Mech. Engrg., 341, 807, 10.1016/j.cma.2018.07.017
Murphy, 2012
Bishop, 2006
Schmidt, 1907, Zur theorie der linearen und nichtlinearen integralgleichungen. i. teil: Entwicklung willkrlicher funktionen nach systemen vorgeschriebener, Math. Ann., 63, 433, 10.1007/BF01449770
Eckart, 1936, The approximation of one matrix by another of lower rank, Psychometrika, 1, 211, 10.1007/BF02288367
Peherstorfer, 2018, Survey of multifidelity methods in uncertainty propagation, inference, and optimization, SIAM Rev., 60, 550, 10.1137/16M1082469
Paciorek, 2004, Nonstationary covariance functions for gaussian process regression, 273
Plagemann, 2008, Nonstationary gaussian process regression using point estimates of local smoothness, 204
Drohmann, 2015, The ROMES method for statistical modeling of reduced-order-model error, SIAM/ASA J. Uncertain. Quantification, 3, 116, 10.1137/140969841
Trehan, 2017, Error modeling for surrogates of dynamical systems using machine learning, Internat. J. Numer. Methods Engrg., 10.1002/nme.5583
Bathe, 2006
F. Negri, redbKIT Version 2.2. http://redbkit.github.io/redbKIT/, 2016.
J. Bonet, A.J. Gil, R.D. Wood, FLagSHyP software. http://www.flagshyp.com/, 2016.
Bonet, 2016