Data-driven reduced order modeling for time-dependent problems

Mengwu Guo1, Jan S. Hesthaven1
1Chair of Computational Mathematics and Simulation Science, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

Tài liệu tham khảo

Hesthaven, 2016 Quarteroni, 2015 Rozza, 2007, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations, Arch. Comput. Methods Eng., 15, 1, 10.1007/BF03024948 Patera, 2007 Wang, 2018, Greedy non-intrusive reduced order model for fluid dynamics, AIAA J. Liang, 2002, Proper orthogonal decomposition and its applications, part i: Theory, J. Sound Vib., 252, 527, 10.1006/jsvi.2001.4041 Haasdonk, 2008, Reduced basis method for finite volume approximations of parametrized linear evolution equations, ESAIM Math. Model. Numer. Anal., 42, 277, 10.1051/m2an:2008001 Barrault, 2004, An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations, C. R. Math., 339, 667, 10.1016/j.crma.2004.08.006 Chaturantabut, 2010, Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32, 2737, 10.1137/090766498 Negri, 2015, Efficient model reduction of parametrized systems by matrix discrete empirical interpolation, J. Comput. Phys., 303, 431, 10.1016/j.jcp.2015.09.046 Benner, 2015, A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev., 57, 483, 10.1137/130932715 Lieu, 2006, Reduced-order fluid/structure modeling of a complete aircraft configuration, Comput. Methods Appl. Mech. Engrg., 195, 5730, 10.1016/j.cma.2005.08.026 Amsallem, 2012, Nonlinear model order reduction based on local reduced-order bases, Internat. J. Numer. Methods Engrg., 92, 891, 10.1002/nme.4371 Kutz, 2016 Lassila, 2013, A reduced computational and geometrical framework for inverse problems in hemodynamics, Int. J. Numer. Methods Biomed. Eng., 29, 741, 10.1002/cnm.2559 Sartori, 2014, A reduced order model for multi-group time-dependent parametrized reactor spatial kinetics Pitton, 2017, On the application of reduced basis methods to bifurcation problems in incompressible fluid dynamics, J. Sci. Comput., 73, 157, 10.1007/s10915-017-0419-6 Afkham, 2017, Structure preserving model reduction of parametric hamiltonian systems, SIAM J. Sci. Comput., 39, A2616, 10.1137/17M1111991 B.M. Afkham, A. Bhatt, B. Haasdonk, J.S. Hesthaven, Symplectic model-reduction with a weighted inner product. arXiv, No. 1803.07799, 2018. Audouze, 2013, Nonintrusive reduced-order modeling of parametrized time-dependent partial differential equations, Numer. Methods Partial Differential Equations, 29, 1587, 10.1002/num.21768 Xiao, 2017, A parameterized non-intrusive reduced order model and error analysis for general time-dependent nonlinear partial differential equations and its applications, Comput. Methods Appl. Mech. Engrg., 317, 868, 10.1016/j.cma.2016.12.033 Sakellariou, 2016, Functionally pooled models for the global identification of stochastic systems under different pseudo-static operating conditions, Mech. Syst. Signal Process., 72, 785, 10.1016/j.ymssp.2015.10.018 Worden, 2014, On gaussian process narx models and their higher-order frequency response functions, 315 Avendaño-Valencia, 2017, Gaussian Process time-series models for structures under operational variability, Front. Built Environ., 3, 69, 10.3389/fbuil.2017.00069 Kopsaftopoulos, 2018, A stochastic global identification framework for aerospace structures operating under varying flight states, Mech. Syst. Signal Process., 98, 425, 10.1016/j.ymssp.2017.05.001 Mai, 2016, Surrogate modeling for stochastic dynamical systems by combining nonlinear autoregressive with exogenous input models and polynomial chaos expansions, Int. J. Uncertain. Quantif., 6, 10.1615/Int.J.UncertaintyQuantification.2016016603 Nguyen, 2015, Gaussian functional regression for linear partial differential equations, Comput. Methods Appl. Mech. Engrg., 287, 69, 10.1016/j.cma.2015.01.008 Nguyen, 2016, Gaussian functional regression for output prediction: Model assimilation and experimental design, J. Comput. Phys., 309, 52, 10.1016/j.jcp.2015.12.035 Haykin, 1999 Hesthaven, 2018, Non-intrusive reduced order modeling of nonlinear problems using neural networks, J. Comput. Phys., 363, 55, 10.1016/j.jcp.2018.02.037 Williams, 1996, Gaussian processes for regression, 514 Rasmussen, 2006 Guo, 2018, Reduced order modeling for nonlinear structural analysis using gaussian process regression, Comput. Methods Appl. Mech. Engrg., 341, 807, 10.1016/j.cma.2018.07.017 Murphy, 2012 Bishop, 2006 Schmidt, 1907, Zur theorie der linearen und nichtlinearen integralgleichungen. i. teil: Entwicklung willkrlicher funktionen nach systemen vorgeschriebener, Math. Ann., 63, 433, 10.1007/BF01449770 Eckart, 1936, The approximation of one matrix by another of lower rank, Psychometrika, 1, 211, 10.1007/BF02288367 Peherstorfer, 2018, Survey of multifidelity methods in uncertainty propagation, inference, and optimization, SIAM Rev., 60, 550, 10.1137/16M1082469 Paciorek, 2004, Nonstationary covariance functions for gaussian process regression, 273 Plagemann, 2008, Nonstationary gaussian process regression using point estimates of local smoothness, 204 Drohmann, 2015, The ROMES method for statistical modeling of reduced-order-model error, SIAM/ASA J. Uncertain. Quantification, 3, 116, 10.1137/140969841 Trehan, 2017, Error modeling for surrogates of dynamical systems using machine learning, Internat. J. Numer. Methods Engrg., 10.1002/nme.5583 Bathe, 2006 F. Negri, redbKIT Version 2.2. http://redbkit.github.io/redbKIT/, 2016. J. Bonet, A.J. Gil, R.D. Wood, FLagSHyP software. http://www.flagshyp.com/, 2016. Bonet, 2016