Coupled Hemodynamics and Oxygen Diffusion in Abdominal Aortic Aneurysm: A Computational Sensitivity Study
Tóm tắt
Tài liệu tham khảo
Ayyalasomayajula, A., J. P. Vande Geest, and B. R. Simon. Porohyperelastic finite element modeling of abdominal aortic aneurysms. J. Biomech. Eng. 132(10):104502, 2010. https://doi.org/10.1115/1.4002370.
Caputo, M., C. Chiastra, C. Cianciolo, E. Cutri, G. Dubini, J. Gunn, et al. Simulation of oxygen transfer in stented arteries and correlation with in-stent restenosis. Int. J. Numer. Method Biomed. Eng. 29(12):1373–1387, 2013. https://doi.org/10.1002/cnm.2588.
Iannetti, L., G. D’Urso, G. Conoscenti, E. Cutri, R. S. Tuan, M. T. Raimondi, et al. Distributed and lumped parameter models for the characterization of high throughput bioreactors. PLoS ONE. 11(9):e0162774, 2016. https://doi.org/10.1371/journal.pone.0162774.
Kemmerling, E. M. C., and R. A. Peattie. Abdominal aortic aneurysm pathomechanics: current understanding and future directions. Adv. Exp. Med. Biol. 1097:157–179, 2018. https://doi.org/10.1007/978-3-319-96445-4_8.
Kuivaniemi, H., E. J. Ryer, J. R. Elmore, and G. Tromp. Understanding the pathogenesis of abdominal aortic aneurysms. Expert Rev. Cardiovasc. Therapy. 13(9):975–987, 2015. https://doi.org/10.1586/14779072.2015.1074861.
Polzer, S., and J. Bursa (eds.). Poroelastic model of intraluminal thrombus in FEA of aortic aneurysm: 6th World Congress of Biomechanics (WCB 2010). Singapore: Springer, 2010.
Raptis, A., M. Xenos, S. Dimas, A. Giannoukas, N. Labropoulos, D. Bluestein, et al. Effect of macroscale formation of intraluminal thrombus on blood flow in abdominal aortic aneurysms. Comput. Methods Biomech. Biomed. Eng. 19(1):84–92, 2016. https://doi.org/10.1080/10255842.2014.989389.
Riveros F, Martufi G, Gasser TC, Rodriguez JF, editors. Influence of intraluminal thrombus topology on AAA passive mechanics. Comput. Cardiol. 2013; 2013: IEEE.
Salman, H. E., B. Ramazanli, M. M. Yavuz, and H. C. Yalcin. Biomechanical investigation of disturbed hemodynamics-induced tissue degeneration in abdominal aortic aneurysms using computational and experimental techniques. Front. Bioeng. Biotechnol. 7:111, 2019. https://doi.org/10.3389/fbioe.2019.00111.
Sun, N., J. H. Leung, N. B. Wood, A. D. Hughes, S. A. Thom, N. J. Cheshire, et al. Computational analysis of oxygen transport in a patient-specific model of abdominal aortic aneurysm with intraluminal thrombus. Br. J. Radiol. 821:S18–S23, 2009. https://doi.org/10.1259/bjr/89466318.
Swedenborg, J., M. I. Mäyränpää, and P. T. Kovanen. Mast cells: important players in the orchestrated pathogenesis of abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 31(4):734–740, 2011.
Takayama, T., and D. Yamanouchi. Aneurysmal disease: the abdominal aorta. Surg. Clin. 93(4):877–891, 2013.
Vorp, D. A., P. C. Lee, D. H. Wang, M. S. Makaroun, E. M. Nemoto, S. Ogawa, et al. Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J. Vasc. Surg. 34(2):291–299, 2001. https://doi.org/10.1067/mva.2001.114813.
Zakerzadeh, R., T. Cupac, and M. Durka. Oxygen transport in a permeable model of abdominal aortic aneurysm. Comput: Methods Biomech. Biomed. Eng, 2020. https://doi.org/10.1080/10255842.2020.1821193.