A Computational Model of Biochemomechanical Effects of Intraluminal Thrombus on the Enlargement of Abdominal Aortic Aneurysms
Tóm tắt
Abdominal aortic aneurysms (AAAs) typically develop an intraluminal thrombus (ILT), yet most computational models of AAAs have focused on either the mechanics of the wall or the hemodynamics within the lesion, both in the absence of ILT. In the few cases wherein ILT has been modeled directly, as, for example, in static models that focus on the state of stress in the aortic wall and the associated rupture risk, thrombus has been modeled as an inert, homogeneous, load-bearing material. Given the biochemomechanical complexity of an ILT, there is a pressing need to consider its diverse effects on the evolving aneurysmal wall. Herein, we present the first growth and remodeling model that addresses together the biomechanics, mechanobiology, and biochemistry of thrombus-laden AAAs. Whereas it has been shown that aneurysmal enlargement in the absence of ILT depends primarily on the stiffness and turnover of fibrillar collagen, we show that the presence of a thrombus within lesions having otherwise the same initial wall composition and properties can lead to either arrest or rupture depending on the biochemical effects (e.g., release of proteases) and biomechanical properties (e.g., stiffness of fibrin) of the ILT. These computational results suggest that ILT should be accounted for when predicting the potential enlargement or rupture risk of AAAs and highlight specific needs for further experimental and computational research.
Tài liệu tham khảo
Adolph, R., D. A. Vorp, D. L. Steed, M. W. Webster, M. V. Kameneva, and S. C. Watkins. Cellular content and permeability of intraluminal thrombus in abdominal aortic aneurysm. J. Vasc. Surg. 25:916–926, 1997.
Anand, M., K. Rajagopal, and K. R. Rajagopal. A model for the formation and lysis of blood clots. Pathophysiol. Haemost. Thromb. 34:109–120, 2005.
Baek, S., K. R. Rajagopal, and J. D. Humphrey. A theoretical model of enlarging intracranial fusiform eneurysms. J. Biomech. Eng. 128:142, 2006.
Behr-Rasmussen, C., N. Grøndal, M. B. Bramsen, M. D. Thomsen, and J. S. Lindholt. Mural thrombus and the progression of abdominal aortic aneurysms: a large population-based prospective cohort study. Eur. J. Vasc. Endovasc. Surg. 48:301–307, 2014.
Biasetti, J., P. G. Spazzini, J. Swedenborg, and T. C. Gasser. An integrated fluid-chemical model toward modeling the formation of intra-luminal thrombus in abdominal aortic aneurysms. Front. Physiol. 3:266, 2012.
Cardamone, L., A. Valentín, J. F. Eberth, and J. D. Humphrey. Origin of axial prestretch and residual stress in arteries. Biomech. Model. Mechanobiol. 8:431–446, 2009.
Di Achille, P., G. Tellides, C. A. Figueroa, and J. D. Humphrey. A haemodynamic predictor of intraluminal thrombus formation in abdominal aortic aneurysms. Proc. R. Soc. A 470:20140163, 2014.
Ene, F., C. Gachon, P. Delassus, R. Carroll, F. Stefanov, P. O’Flynn, and L. Morris. In vitro evaluation of the effects of intraluminal thrombus on abdominal aortic aneurysm wall dynamics. Med. Eng. Phys. 33:957–966, 2011.
Fontaine, V., M.-P. Jacob, X. Houard, P. Rossignol, D. Plissonnier, E. Angles-Cano, and J.-B. Michel. Involvement of the mural thrombus as a site of protease release and activation in human aortic aneurysms. Am. J. Pathol. 161:1701–1710, 2002.
Fontaine, V., Z. Touat, E. M. Mtairag, R. Vranckx, L. Louedec, X. Houard, B. Andreassian, U. Sebbag, T. Palombi, M.-P. Jacob, O. Meilhac, and J.-B. Michel. Role of leukocyte elastase in preventing cellular re-colonization of the mural thrombus. Am. J. Pathol. 164:2077–2087, 2004.
Franck, G., J. Dai, A. Fifre, S. Ngo, C. Justine, S. Michineau, E. Allaire, and M. Gervais. Reestablishment of the endothelial lining by endothelial cell therapy stabilizes experimental abdominal aortic aneurysms. Circulation 127:1877–1887, 2013.
Hinnen, J.-W., O. H. J. Koning, M. J. T. Visser, and H. J. Van Bockel. Effect of intraluminal thrombus on pressure transmission in the abdominal aortic aneurysm. J. Vasc. Surg. 42:1176–1182, 2005.
Hjort, P. F., and H. Paputchis. Platelet life span in normal, splenectomized and hypersplenic rats. Blood 15:45–51, 1950.
Houard, X., Z. Touat, V. Ollivier, L. Louedec, M. Philippe, U. Sebbag, O. Meilhac, P. Rossignol, and J.-B. Michel. Mediators of neutrophil recruitment in human abdominal aortic aneurysms. Cardiovasc. Res. 82:532–541, 2009.
Humphrey, J. D. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. Springer, 2002.
Humphrey, J. D., and G. A. Holzapfel. Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. J. Biomech. 45:805–814, 2012.
Humphrey, J. D., and K. R. Rajagopal. A constrained mixture model for growth and remodeling of soft tissues. Math. Model. Methods Appl. Sci. 12:407–430, 2002.
Humphrey, J. D., and C. A. Taylor. Intracranial and abdominal aortic aneurysms: similarities, differences and need for a new class of computational models. Annu. Rev. Biomed. Eng. 10:221–246, 2008.
Inzoli, F., F. Boschetti, M. Zappa, T. Longo, and R. Fumero. Biomechanical factors in abdominal aortic aneurysm rupture. Eur. J. Vasc. Surg. 7:667–674, 1993.
Karšaj, I., and J. D. Humphrey. A multilayered wall model of arterial growth and remodeling. Mech. Mater. 44:110–119, 2012.
Karšaj, I., J. Sorić, and J. D. Humphrey. A 3-D framework for arterial growth and remodeling in response to altered hemodynamics. Int. J. Eng. Sci. 48:1357–1372, 2011.
Kline, D. L., and E. E. Cliffton. Lifespan of leucocytes in man. J. Appl. Physiol. 5:79–84, 1952.
Koole, D., H. J. A. Zandvoort, A. Schoneveld, A. Vink, J. A. Vos, L. L. van den Hoogen, J.-P. P. M. de Vries, G. Pasterkamp, F. L. Moll, and J. A. van Herwaarden. Intraluminal abdominal aortic aneurysm thrombus is associated with disruption of wall integrity. J. Vasc. Surg. 57:77–83, 2013.
Les, A. S., S. C. Shadden, C. A. Figueroa, J. M. Park, M. M. Tedesco, R. J. Herfkens, R. L. Dalman, and C. A. Taylor. Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann. Biomed. Eng. 38:1288–1313, 2010.
Matusik, P., P. Mazur, E. Stepień, R. Pfitzner, J. Sadowski, and A. Undas. Architecture of intraluminal thrombus removed from abdominal aortic aneurysm. J. Thromb. Thrombolysis 30:7–9, 2010.
Mäyränpää, M. I., J. A. Trosien, V. Fontaine, M. Folkesson, M. Kazi, P. Eriksson, J. Swedenborg, and U. Hedin. Mast cells associate with neovessels in the media and adventitia of abdominal aortic aneurysms. J. Vasc. Surg. 50:388–396, 2009.
Nackman, G. B., F. J. Karkowski, V. J. Halpern, H. P. Gaetz, and M. D. Tilson. Elastin degradation products induce adventitial angiogenesis in the Anidjar/Dobrin rat aneurysm model. Surgery 122:39–44, 1997.
Riveros, F., G. Martufi, T. C. Gasser, and J. F. Rodriguez. Influence of intraluminal thrombus topology on AAA passive mechanics. Comput. Cardiol. 899–902:2013, 2010.
Schriefl, A. J., G. Zeindlinger, D. M. Pierce, P. Regitnig, and G. A. Holzapfel. Determination of the layer-specific distributed collagen fibre orientations in human thoracic and abdominal aortas and common iliac arteries. J. R. Soc. Interface 9:1275–1286, 2012.
Schurink, G. W. H., J. M. Van Baalen, and M. J. T. Visser. Thrombus within an aortic aneurysm does not reduce pressure on the aneurysmal wall. J. Vasc. Surg. 31:501–506, 2000.
Scott, D. J. A., P. Prasad, H. Philippou, S. T. Rashid, S. Sohrabi, D. Whalley, A. Kordowicz, Q. Tang, R. M. West, A. Johnson, J. Woods, R. A. Ajjan, and R. A. S. Ariëns. Clot architecture is altered in abdominal aortic aneurysms and correlates with aneurysm size. Arterioscler. Thromb. Vasc. Biol. 31:3004–3010, 2011.
Sheidaei, A., S. C. Hunley, S. Zeinali-Davarani, L. G. Raguin, and S. Baek. Simulation of abdominal aortic aneurysm growth with updating hemodynamic loads using a realistic geometry. Med. Eng. Phys. 33:80–88, 2011.
Tong, J., T. Cohnert, P. Regitnig, and G. A. Holzapfel. Effects of age on the elastic properties of the intraluminal thrombus and the thrombus-covered wall in abdominal aortic aneurysms: biaxial extension behaviour and material modelling. Eur. J. Vasc. Endovasc. Surg. 42:207–219, 2011.
Valentín, A., and J. D. Humphrey. Parameter sensitivity study of a constrained mixture model of arterial growth and remodeling. J. Biomech. Eng. 131:101006, 2009.
Valentín, A., J. D. Humphrey, and G. A. Holzapfel. A multi-layered computational model of coupled elastin degradation, vasoactive dysfunction, and collagenous stiffening in aortic aging. Ann. Biomed. Eng. 39:2027–2045, 2011.
Vande Geest, J. P., M. S. Sacks, and D. A. Vorp. A planar biaxial constitutive relation for the luminal layer of intra-luminal thrombus in abdominal aortic aneurysms. J. Biomech. 39:2347–2354, 2006.
Vorp, D. A. Biomechanics of abdominal aortic aneurysm. J. Biomech. 40:1887–1902, 2007.
Vorp, D. A., P. C. Lee, D. H. Wang, M. S. Makaroun, E. M. Nemoto, S. Ogawa, and M. W. Webster. Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J. Vasc. Surg. 34:291–299, 2002.
Wang, D. H. J., M. S. Makaroun, M. W. Webster, and D. A. Vorp. Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J. Vasc. Surg. 36:598–604, 2002.
Watton, P. N., and N. A. Hill. Evolving mechanical properties of a model of abdominal aortic aneurysm. Biomech. Model. Mechanobiol. 8:25–42, 2009.
Whittaker, P., and K. Przyklenk. Fibrin architecture in clots: a quantitative polarized light microscopy analysis. Blood Cells. Mol. Dis. 42:51–56, 2009.
Wilson, J. S., S. Baek, and J. D. Humphrey. Parametric study of effects of collagen turnover on the natural history of abdominal aortic aneurysms. Proc. Math. Phys. Eng. Sci. 469:20120556, 2013.
Wilson, J. S., L. Virag, P. Di Achille, I. Karšaj, and J. D. Humphrey. Biochemomechanics of intraluminal thrombus in abdominal aortic aneurysms. J. Biomech. Eng. 135:021011, 2013.
Wu, J., and S. C. Shadden. Coupled simulation of hemodynamics and vascular growth and remodeling in a subject-specific geometry. Ann. Biomed. Eng. 2015. doi:10.1007/s10439-015-1287-6.
Xu, Z., J. Lioi, J. Mu, M. M. Kamocka, X. Liu, D. Z. Chen, E. D. Rosen, and M. Alber. A multiscale model of venous thrombus formation with surface-mediated control of blood coagulation cascade. Biophys. J. 98:1723–1732, 2010.