Hình thành heterochromatin cấu trúc và sự phiên mã ở động vật có vú

Springer Science and Business Media LLC - Tập 8 - Trang 1-17 - 2015
Nehmé Saksouk1, Elisabeth Simboeck1, Jérôme Déjardin1
1INSERM AVENIR Team, Institute of Human Genetics, Montpellier, France

Tóm tắt

Heterochromatin cấu trúc, chủ yếu hình thành ở các vùng nghèo gen của pericentromere, được cho là đảm bảo một cấu hình chromatin ngưng tụ và không hoạt động về phiên mã. Pericentromere bao gồm các chuỗi lặp lại vệ tinh tandem và là các yếu tố nhiễm sắc thể quan trọng có trách nhiệm cho sự phân chia nhiễm sắc thể chính xác trong quá trình nguyên phân. Các chuỗi lặp lại không được bảo tồn và có thể thay đổi lớn giữa các sinh vật khác nhau, cho thấy rằng chức năng của pericentromer có thể được điều khiển theo phương diện di truyền biểu sinh. Trong bài đánh giá này, chúng tôi sẽ thảo luận về cách hình thành và duy trì heterochromatin cấu trúc tại pericentromere nhằm đảm bảo tính toàn vẹn của chúng. Chúng tôi sẽ mô tả sự hình thành sinh học và chức năng của các con đường di truyền biểu sinh chính có liên quan và cách mà chúng kết nối với nhau. Thú vị thay, những phát hiện gần đây gợi ý rằng các con đường thay thế có thể thay thế cho các con đường đã được xác lập khi bị gián đoạn, cho thấy rằng heterochromatin cấu trúc chứa nhiều tính dẻo hơn so với những gì được giả định trước đây. Ngoài ra, mặc dù có bản chất heterochromatin của pericentromere, có bằng chứng ngày càng tăng cho sự phiên mã hoạt động và được điều chỉnh tại những vị trí này, trong nhiều sinh vật và dưới nhiều bối cảnh sinh học khác nhau. Do đó, trong phần thứ hai của bài đánh giá này, chúng tôi sẽ đề cập đến khía cạnh tương đối mới này và thảo luận về các chức năng có thể có của sự biểu hiện pericentromer.

Từ khóa

#heterochromatin #pericentromere #phiên mã #di truyền biểu sinh #sinh học tế bào

Tài liệu tham khảo

Schueler MG, Sullivan BA: Structural and functional dynamics of human centromeric chromatin. Annu Rev Genomics Hum Genet. 2006, 7:301–13. 10.1146/annurev.genom.7.080505.115613

Ehrlich M, Sanchez C, Shao C, Nishiyama R, Kehrl J, Kuick R, et al.: ICF, an immunodeficiency syndrome: DNA methyltransferase 3B involvement, chromosome anomalies, and gene dysregulation. Autoimmunity 2008,41(4):253–71. 10.1080/08916930802024202

Blewitt ME, Vickaryous NK, Hemley SJ, Ashe A, Bruxner TJ, Preis JI, et al.: An N-ethyl-N-nitrosourea screen for genes involved in variegation in the mouse. Proc Natl Acad Sci USA 2005,102(21):7629–34. 10.1073/pnas.0409375102

Fodor BD, Shukeir N, Reuter G, Jenuwein T: Mammalian Su ( var ) genes in chromatin control. Annu Rev Cell Dev Biol. 2010, 26:471–501. 10.1146/annurev.cellbio.042308.113225

Birchler JA, Bhadra MP, Bhadra U: Making noise about silence: repression of repeated genes in animals. Curr Opin Genet Dev 2000,10(2):211–6. 10.1016/S0959-437X(00)00065-4

Pal-Bhadra M, Leibovitch BA, Gandhi SG, Chikka MR, Bhadra U, Birchler JA, et al.: Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 2004,303(5658):669–72. 10.1126/science.1092653

Eissenberg JC, James TC, Foster-Hartnett DM, Hartnett T, Ngan V, Elgin SC: Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster . Proc Natl Acad Sci USA 1990,87(24):9923–7. 10.1073/pnas.87.24.9923

Nozawa RS, Nagao K, Masuda HT, Iwasaki O, Hirota T, Nozaki N, et al.: Human POGZ modulates dissociation of HP1α from mitotic chromosome arms through Aurora B activation. Nat Cell Biol 2010,12(7):719–27. 10.1038/ncb2075

Greer EL, Shi Y: Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 2012,13(5):343–57. 10.1038/nrg3173

Bannister AJ, Kouzarides T: Regulation of chromatin by histone modifications. Cell Res 2011,21(3):381–95. 10.1038/cr.2011.22

Margueron R, Reinberg D: Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet 2010,11(4):285–96. 10.1038/nrg2752

Klose RJ, Zhang Y: Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol 2007,8(4):307–18. 10.1038/nrm2143

Strahl BD, Allis CD: The language of covalent histone modifications. Nature 2000,403(6765):41–5. 10.1038/47412

Pinheiro I, Margueron R, Shukeir N, Eisold M, Fritzsch C, Richter FM, et al.: Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity. Cell 2012,150(5):948–60. 10.1016/j.cell.2012.06.048

Loyola A, Tagami H, Bonaldi T, Roche D, Quivy JP, Imhof A, et al.: The HP1α-CAF1-SetDB1-containing complex provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin. EMBO Rep 2009,10(7):769–75. 10.1038/embor.2009.90

Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T: Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 2001,410(6824):116–20. 10.1038/35065132

Peters AH, Kubicek S, Mechtler K, O’Sullivan RJ, Derijck AA, Perez-Burgos L, et al.: Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 2003,12(6):1577–89. 10.1016/S1097-2765(03)00477-5

McManus KJ, Biron VL, Heit R, Underhill DA, Hendzel MJ: Dynamic changes in histone H3 lysine 9 methylations: identification of a mitosis-specific function for dynamic methylation in chromosome congression and segregation. J Biol Chem 2006,281(13):8888–97. 10.1074/jbc.M505323200

Peters AH, O’Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C, et al.: Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 2001,107(3):323–37. 10.1016/S0092-8674(01)00542-6

Peng JC, Karpen GH: H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat Cell Biol 2007,9(1):25–35. 10.1038/ncb1514

Sinclair DA, Mills K, Guarente L: Accelerated aging and nucleolar fragmentation in yeast SGS1 mutants. Science 1997,277(5330):1313–6. 10.1126/science.277.5330.1313

Murayama A, Ohmori K, Fujimura A, Minami H, Yasuzawa-Tanaka K, Kuroda T, et al.: Epigenetic control of rDNA loci in response to intracellular energy status. Cell 2008,133(4):627–39. 10.1016/j.cell.2008.03.030

Dillon N, Festenstein R: Unravelling heterochromatin: competition between positive and negative factors regulates accessibility. Trends Genet 2002,18(5):252–8. 10.1016/S0168-9525(02)02648-3

Sakaguchi A, Karachentsev D, Seth-Pasricha M, Druzhinina M, Steward R: Functional characterization of the Drosophila Hmt4–20/Suv4–20 histone methyltransferase. Genetics 2008,179(1):317–22. 10.1534/genetics.108.087650

Salic A, Waters JC, Mitchison TJ: Vertebrate shugoshin links sister centromere cohesion and kinetochore microtubule stability in mitosis. Cell 2004,118(5):567–78. 10.1016/j.cell.2004.08.016

Tang Z, Sun Y, Harley SE, Zou H, Yu H: Human Bub1 protects centromeric sister-chromatid cohesion through Shugoshin during mitosis. Proc Natl Acad Sci USA 2004,101(52):18012–7. 10.1073/pnas.0408600102

Hahn M, Dambacher S, Dulev S, Kuznetsova AY, Eck S, Worz S, et al.: Suv4–20 h2 mediates chromatin compaction and is important for cohesin recruitment to heterochromatin. Genes Dev 2013,27(8):859–72. 10.1101/gad.210377.112

Kuo AJ, Song J, Cheung P, Ishibe-Murakami S, Yamazoe S, Chen JK, et al.: The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome. Nature 2012,484(7392):115–9. 10.1038/nature10956

Greeson NT, Sengupta R, Arida AR, Jenuwein T, Sanders SL: Di-methyl H4 lysine 20 targets the checkpoint protein Crb2 to sites of DNA damage. J Biol Chem 2008,283(48):33168–74. 10.1074/jbc.M806857200

Tachibana M, Sugimoto K, Fukushima T, Shinkai Y: SET domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem 2001,276(27):25309–17. 10.1074/jbc.M101914200

Wu H, Chen X, Xiong J, Li Y, Li H, Ding X, et al.: Histone methyltransferase G9a contributes to H3K27 methylation in vivo . Cell Res 2011,21(2):365–7. 10.1038/cr.2010.157

Gao S, Xiong J, Zhang C, Berquist BR, Yang R, Zhao M, et al.: Impaired replication elongation in Tetrahymena mutants deficient in histone H3 Lys 27 monomethylation. Genes Dev 2013,27(15):1662–79. 10.1101/gad.218966.113

Picketts DJ, Higgs DR, Bachoo S, Blake DJ, Quarrell OW, Gibbons RJ: ATRX encodes a novel member of the SNF2 family of proteins: mutations point to a common mechanism underlying the ATR-X syndrome. Hum Mol Genet 1996,5(12):1899–907. 10.1093/hmg/5.12.1899

McDowell TL, Gibbons RJ, Sutherland H, O’Rourke DM, Bickmore WA, Pombo A, et al.: Localization of a putative transcriptional regulator (ATRX) at pericentromeric heterochromatin and the short arms of acrocentric chromosomes. Proc Natl Acad Sci USA 1999,96(24):13983–8. 10.1073/pnas.96.24.13983

Ishov AM, Vladimirova OV, Maul GG: Heterochromatin and ND10 are cell-cycle regulated and phosphorylation-dependent alternate nuclear sites of the transcription repressor Daxx and SWI/SNF protein ATRX. J Cell Sci 2004,117(17):3807–20. 10.1242/jcs.01230

Lewis PW, Elsaesser SJ, Noh KM, Stadler SC, Allis CD: Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci USA 2010,107(32):14075–80. 10.1073/pnas.1008850107

Drane P, Ouararhni K, Depaux A, Shuaib M, Hamiche A: The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev 2010,24(12):1253–65. 10.1101/gad.566910

Santenard A, Ziegler-Birling C, Koch M, Tora L, Bannister AJ, Torres-Padilla ME: Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat Cell Biol 2010,12(9):853–62. 10.1038/ncb2089

Fan JY, Rangasamy D, Luger K, Tremethick DJ: H2A.Z alters the nucleosome surface to promote HP1α-mediated chromatin fiber folding. Mol Cell 2004,16(4):655–61. 10.1016/j.molcel.2004.10.023

Rangasamy D, Berven L, Ridgway P, Tremethick DJ: Pericentric heterochromatin becomes enriched with H2A.Z during early mammalian development. EMBO J 2003,22(7):1599–607. 10.1093/emboj/cdg160

Bird A: DNA methylation patterns and epigenetic memory. Genes Dev 2002,16(1):6–21. 10.1101/gad.947102

Okano M, Bell DW, Haber DA, Li E: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999,99(3):247–57. 10.1016/S0092-8674(00)81656-6

Tamaru H, Selker EU: A histone H3 methyltransferase controls DNA methylation in Neurospora crassa . Nature 2001,414(6861):277–83. 10.1038/35104508

Jackson JP, Lindroth AM, Cao X, Jacobsen SE: Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 2002,416(6880):556–60. 10.1038/nature731

Lehnertz B, Ueda Y, Derijck AAHA, Braunschweig U, Perez-Burgos L, Kubicek S, et al.: Suv39h -mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 2003,13(14):1192–200. 10.1016/S0960-9822(03)00432-9

Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA, et al.: The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 2007,450(7171):908–12. 10.1038/nature06397

Rothbart SB, Krajewski K, Nady N, Tempel W, Xue S, Badeaux AI, et al.: Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Nat Struct Mol Biol 2012,19(11):1155–60. 10.1038/nsmb.2391

Wang G, Allis C, Chi P: Chromatin remodeling and cancer, part II: ATP-dependent chromatin remodeling. Trends Mol Med 2007,13(9):373–80. 10.1016/j.molmed.2007.07.004

Pegoraro G, Kubben N, Wickert U, Gohler H, Hoffmann K, Misteli T: Ageing-related chromatin defects through loss of the NURD complex. Nat Cell Biol 2009,11(10):1261–7. 10.1038/ncb1971

Strohner R, Nemeth A, Jansa P, Hofmann-Rohrer U, Santoro R, Langst G, et al.: NoRC - a novel member of mammalian ISWI-containing chromatin remodeling machines. EMBO J 2001,20(17):4892–900. 10.1093/emboj/20.17.4892

Postepska-Igielska A, Krunic D, Schmitt N, Greulich-Bode KM, Boukamp P, Grummt I: The chromatin remodelling complex NoRC safeguards genome stability by heterochromatin formation at telomeres and centromeres. EMBO Rep 2013,14(8):704–10. 10.1038/embor.2013.87

Guetg C, Lienemann P, Sirri V, Grummt I, Hernandez-Verdun D, Hottiger MO, et al.: The NoRC complex mediates the heterochromatin formation and stability of silent rRNA genes and centromeric repeats. EMBO J 2010,29(13):2135–46. 10.1038/emboj.2010.17

Collins N, Poot RA, Kukimoto I, García-Jiménez C, Dellaire G, Varga-Weisz PD: An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nat Genet 2002,32(4):627–32. 10.1038/ng1046

Eisen JA, Sweder KS, Hanawalt PC: Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res 1995,23(14):2715–23. 10.1093/nar/23.14.2715

Huang J, Fan T, Yan Q, Zhu H, Fox S, Issaq HJ, et al.: Lsh, an epigenetic guardian of repetitive elements. Nucleic Acids Res 2004,32(17):5019–28. 10.1093/nar/gkh821

Yan Q, Huang J, Fan T, Zhu H, Muegge K: Lsh, a modulator of CpG methylation, is crucial for normal histone methylation. EMBO J 2003,22(19):5154–62. 10.1093/emboj/cdg493

Muegge K: Lsh, a guardian of heterochromatin at repeat elements. Biochem Cell Biol 2005,83(4):548–54. 10.1139/o05-119

Bantignies F, Cavalli G: Cellular memory and dynamic regulation of Polycomb group proteins. Curr Opin Cell Biol 2006,18(3):275–83. 10.1016/j.ceb.2006.04.003

Margueron R, Reinberg D: The Polycomb complex PRC2 and its mark in life. Nature 2011,469(7330):343–9. 10.1038/nature09784

Kirmizis A, Bartley SM, Kuzmichev A, Margueron R, Reinberg D, Green R, et al.: Silencing of human Polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev 2004,18(13):1592–605. 10.1101/gad.1200204

Li G, Margueron R, Ku M, Chambon P, Bernstein BE, Reinberg D: Jarid2 and PRC2, partners in regulating gene expression. Genes Dev 2010,24(4):368–80. 10.1101/gad.1886410

Pasini D, Cloos PA, Walfridsson J, Olsson L, Bukowski JP, Johansen JV, et al.: JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 2010,464(7286):306–10. 10.1038/nature08788

Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D: Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev 2002,16(22):2893–905. 10.1101/gad.1035902

Puschendorf M, Terranova R, Boutsma E, Mao X, Isono K, Brykczynska U, et al.: PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat Genet 2008,40(4):411–20. 10.1038/ng.99

Moazed D: Mechanisms for the inheritance of chromatin states. Cell 2011,146(4):510–8. 10.1016/j.cell.2011.07.013

Strahl-Bolsinger S, Hecht A, Luo K, Grunstein M: SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev 1997,11(1):83–93. 10.1101/gad.11.1.83

Kim EJ, Um SJ: SIRT1: roles in aging and cancer. BMB Rep 2008,41(11):751–6. 10.5483/BMBRep.2008.41.11.751

Vaquero A, Sternglanz R, Reinberg D: NAD + -dependent deacetylation of H4 lysine 16 by class III HDACs. Oncogene 2007,26(37):5505–20. 10.1038/sj.onc.1210617

Noma K, Sugiyama T, Cam H, Verdel A, Zofall M, Jia S, et al.: RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nat Genet 2004,36(11):1174–80. 10.1038/ng1452

Flamm WG, Walker PM, McCallum M: Some properties of the single strands isolated from the DNA of the nuclear satellite of the mouse ( Mus musculus ). J Mol Biol 1969,40(3):423–43. 10.1016/0022-2836(69)90163-6

Enukashvily NI, Ponomartsev NV: Mammalian satellite DNA: a speaking dumb. Adv Protein Chem Struct Biol. 2013, 90:31–65.

Eymery A, Horard B, El Atifi-Borel M, Fourel G, Berger F, Vitte AL, et al.: A transcriptomic analysis of human centromeric and pericentric sequences in normal and tumor cells. Nucleic Acids Res 2009,37(19):6340–54. 10.1093/nar/gkp639

Hall LE, Mitchell SE, O’Neill RJ: Pericentric and centromeric transcription: a perfect balance required. Chromosome Res 2012,20(5):535–46. 10.1007/s10577-012-9297-9

Rudert F, Bronner S, Garnier JM, Dolle P: Transcripts from opposite strands of γ satellite DNA are differentially expressed during mouse development. Mamm Genome 1995,6(2):76–83. 10.1007/BF00303248

Valgardsdottir R, Chiodi I, Giordano M, Cobianchi F, Riva S, Biamonti G: Structural and functional characterization of noncoding repetitive RNAs transcribed in stressed human cells. Mol Biol Cell 2005,16(6):2597–604. 10.1091/mbc.E04-12-1078

Jolly C, Metz A, Govin J, Vigneron M, Turner BM, Khochbin S, et al.: Stress-induced transcription of satellite III repeats. J Cell Biol 2004,164(1):25–33. 10.1083/jcb.200306104

Martens JH, O’Sullivan RJ, Braunschweig U, Opravil S, Radolf M, Steinlein P, et al.: The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J 2005,24(4):800–12. 10.1038/sj.emboj.7600545

Terranova R, Sauer S, Merkenschlager M, Fisher AG: The reorganisation of constitutive heterochromatin in differentiating muscle requires HDAC activity. Exp Cell Res 2005,310(2):344–56. 10.1016/j.yexcr.2005.07.031

Djupedal I, Ekwall K: Epigenetics: heterochromatin meets RNAi. Cell Res 2009,19(3):282–95. 10.1038/cr.2009.13

Lippman Z, Martienssen R: The role of RNA interference in heterochromatic silencing. Nature 2004,431(7006):364–70. 10.1038/nature02875

Chen ES, Zhang K, Nicolas E, Cam HP, Zofall M, Grewal SI: Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature 2008,451(7179):734–7. 10.1038/nature06561

Fukagawa T, Nogami M, Yoshikawa M, Ikeno M, Okazaki T, Takami Y, et al.: Dicer is essential for the formation of the heterochromatin structure in vertebrate cells. Nat Cell Biol 2004,6(8):784–91. 10.1038/ncb1155

Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, et al.: Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 2005,19(4):489–501. 10.1101/gad.1248505

Hsieh CL, Lin CL, Liu H, Chang YJ, Shih CJ, Zhong CZ, et al.: WDHD1 modulates the post-transcriptional step of the centromeric silencing pathway. Nucleic Acids Res 2011,39(10):4048–62. 10.1093/nar/gkq1338

Lu J, Gilbert DM: Proliferation-dependent and cell cycle regulated transcription of mouse pericentric heterochromatin. J Cell Biol 2007,179(3):411–21. 10.1083/jcb.200706176

Fischle W, Tseng BS, Dormann HL, Ueberheide BM, Garcia BA, Shabanowitz J, et al.: Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 2005,438(7071):1116–22. 10.1038/nature04219

Maison C, Bailly D, Peters AH, Quivy JP, Roche D, Taddei A, et al.: Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat Genet 2002,30(3):329–34. 10.1038/ng843

Muchardt C, Guilleme M, Seeler JS, Trouche D, Dejean A, Yaniv M: Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1α. EMBO Rep 2002,3(10):975–81. 10.1093/embo-reports/kvf194

Probst AV, Okamoto I, Casanova M, El Marjou F, Le Baccon P, Almouzni G: A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev Cell 2010,19(4):625–38. 10.1016/j.devcel.2010.09.002

Enukashvily NI, Malashicheva AB, Waisertreiger IS: Satellite DNA spatial localization and transcriptional activity in mouse embryonic E-14 and IOUD2 stem cells. Cytogenet Genome Res 2009,124(3–4):277–87.

Peinado H, Portillo F, Cano A: Switching on-off Snail: LOXL2 versus GSK3β. Cell Cycle 2005,4(12):1749–52. 10.4161/cc.4.12.2224

Enukashvily NI, Donev R, Waisertreiger IS, Podgornaya OI: Human chromosome 1 satellite 3 DNA is decondensed, demethylated and transcribed in senescent cells and in A431 epithelial carcinoma cells. Cytogenet Genome Res 2007,118(1):42–54. 10.1159/000106440

Denegri M, Moralli D, Rocchi M, Biggiogera M, Raimondi E, Cobianchi F, et al.: Human chromosomes 9, 12, and 15 contain the nucleation sites of stress-induced nuclear bodies. Mol Biol Cell 2002,13(6):2069–79. 10.1091/mbc.01-12-0569

Jolly C, Konecny L, Grady DL, Kutskova YA, Cotto JJ, Morimoto RI, et al.: In vivo binding of active heat shock transcription factor 1 to human chromosome 9 heterochromatin during stress. J Cell Biol 2002,156(5):775–81. 10.1083/jcb.200109018

Chiodi I, Corioni M, Giordano M, Valgardsdottir R, Ghigna C, Cobianchi F, et al.: RNA recognition motif 2 directs the recruitment of SF2/ASF to nuclear stress bodies. Nucleic Acids Res 2004,32(14):4127–36. 10.1093/nar/gkh759

Metz A, Soret J, Vourc’h C, Tazi J, Jolly C: A key role for stress-induced satellite III transcripts in the relocalization of splicing factors into nuclear stress granules. J Cell Sci 2004,117(19):4551–8. 10.1242/jcs.01329

Morozov VM, Gavrilova EV, Ogryzko VV, Ishov AM: Dualistic function of Daxx at centromeric and pericentromeric heterochromatin in normal and stress conditions. Nucleus 2012,3(3):276–85. 10.4161/nucl.20180

Lamszus K, Kluwe L, Matschke J, Meissner H, Laas R, Westphal M: Allelic losses at 1p, 9q, 10q, 14q, and 22q in the progression of aggressive meningiomas and undifferentiated meningeal sarcomas. Cancer Genet Cytogenet 1999,110(2):103–10. 10.1016/S0165-4608(98)00209-X

Biamonti G: Nuclear stress bodies: a heterochromatin affair? Nat Rev Mol Cell Biol 2004,5(6):493–8. 10.1038/nrm1405

Jolly C, Lakhotia SC: Human sat III and Drosophila hsrω transcripts: a common paradigm for regulation of nuclear RNA processing in stressed cells. Nucleic Acids Res 2006,34(19):5508–14. 10.1093/nar/gkl711

Bouzinba-Segard H, Guais A, Francastel C: Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function. Proc Natl Acad Sci USA 2006,103(23):8709–14. 10.1073/pnas.0508006103

Zhu Q, Pao GM, Huynh AM, Suh H, Tonnu N, Nederlof PM, et al.: BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature 2011,477(7363):179–84. 10.1038/nature10371

Ting DT, Lipson D, Paul S, Brannigan BW, Akhavanfard S, Coffman EJ, et al.: Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science 2011,331(6017):593–6. 10.1126/science.1200801

Shumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR, Erdos MR, et al.: Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci USA 2006,103(23):8703–8. 10.1073/pnas.0602569103

Frescas D, Guardavaccaro D, Kuchay SM, Kato H, Poleshko A, Basrur V, et al.: KDM2A represses transcription of centromeric satellite repeats and maintains the heterochromatic state. Cell Cycle 2008,7(22):3539–47. 10.4161/cc.7.22.7062

Sugimura K, Fukushima Y, Ishida M, Ito S, Nakamura M, Mori Y, et al.: Cell cycle-dependent accumulation of histone H3.3 and euchromatic histone modifications in pericentromeric heterochromatin in response to a decrease in DNA methylation levels. Exp Cell Res 2010,316(17):2731–46. 10.1016/j.yexcr.2010.06.016

Jeanpierre M, Turleau C, Aurias A, Prieur M, Ledeist F, Fischer A, et al.: An embryonic-like methylation pattern of classical satellite DNA is observed in ICF syndrome. Hum Mol Genet 1993,2(6):731–5. 10.1093/hmg/2.6.731

Prokocimer M, Barkan R, Gruenbaum Y: Hutchinson-Gilford progeria syndrome through the lens of transcription. Aging Cell 2013,12(4):533–43. 10.1111/acel.12070

Solovei I, Wang AS, Thanisch K, Schmidt CS, Krebs S, Zwerger M, et al.: LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 2013,152(3):584–98. 10.1016/j.cell.2013.01.009

Vassen L, Fiolka K, Möröy T: Gfi1b alters histone methylation at target gene promoters and sites of γ-satellite containing heterochromatin. EMBO J 2006,25(11):2409–19. 10.1038/sj.emboj.7601124

Zeng L, Yap KL, Ivanov AV, Wang X, Mujtaba S, Plotnikova O, et al.: Structural insights into human KAP1 PHD finger-bromodomain and its role in gene silencing. Nat Struct Mol Biol 2008,15(6):626–33. 10.1038/nsmb.1416

Yamashita K, Sato A, Asashima M, Wang PC, Nishinakamura R: Mouse homolog of SALL1, a causative gene for Townes-Brocks syndrome, binds to A/T-rich sequences in pericentric heterochromatin via its C-terminal zinc finger domains. Genes Cells 2007,12(2):171–82. 10.1111/j.1365-2443.2007.01042.x