Hình thành heterochromatin cấu trúc và sự phiên mã ở động vật có vú
Tóm tắt
Từ khóa
#heterochromatin #pericentromere #phiên mã #di truyền biểu sinh #sinh học tế bàoTài liệu tham khảo
Schueler MG, Sullivan BA: Structural and functional dynamics of human centromeric chromatin. Annu Rev Genomics Hum Genet. 2006, 7:301–13. 10.1146/annurev.genom.7.080505.115613
Ehrlich M, Sanchez C, Shao C, Nishiyama R, Kehrl J, Kuick R, et al.: ICF, an immunodeficiency syndrome: DNA methyltransferase 3B involvement, chromosome anomalies, and gene dysregulation. Autoimmunity 2008,41(4):253–71. 10.1080/08916930802024202
Blewitt ME, Vickaryous NK, Hemley SJ, Ashe A, Bruxner TJ, Preis JI, et al.: An N-ethyl-N-nitrosourea screen for genes involved in variegation in the mouse. Proc Natl Acad Sci USA 2005,102(21):7629–34. 10.1073/pnas.0409375102
Fodor BD, Shukeir N, Reuter G, Jenuwein T: Mammalian Su ( var ) genes in chromatin control. Annu Rev Cell Dev Biol. 2010, 26:471–501. 10.1146/annurev.cellbio.042308.113225
Birchler JA, Bhadra MP, Bhadra U: Making noise about silence: repression of repeated genes in animals. Curr Opin Genet Dev 2000,10(2):211–6. 10.1016/S0959-437X(00)00065-4
Pal-Bhadra M, Leibovitch BA, Gandhi SG, Chikka MR, Bhadra U, Birchler JA, et al.: Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 2004,303(5658):669–72. 10.1126/science.1092653
Eissenberg JC, James TC, Foster-Hartnett DM, Hartnett T, Ngan V, Elgin SC: Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster . Proc Natl Acad Sci USA 1990,87(24):9923–7. 10.1073/pnas.87.24.9923
Nozawa RS, Nagao K, Masuda HT, Iwasaki O, Hirota T, Nozaki N, et al.: Human POGZ modulates dissociation of HP1α from mitotic chromosome arms through Aurora B activation. Nat Cell Biol 2010,12(7):719–27. 10.1038/ncb2075
Greer EL, Shi Y: Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 2012,13(5):343–57. 10.1038/nrg3173
Bannister AJ, Kouzarides T: Regulation of chromatin by histone modifications. Cell Res 2011,21(3):381–95. 10.1038/cr.2011.22
Margueron R, Reinberg D: Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet 2010,11(4):285–96. 10.1038/nrg2752
Klose RJ, Zhang Y: Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol 2007,8(4):307–18. 10.1038/nrm2143
Strahl BD, Allis CD: The language of covalent histone modifications. Nature 2000,403(6765):41–5. 10.1038/47412
Pinheiro I, Margueron R, Shukeir N, Eisold M, Fritzsch C, Richter FM, et al.: Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity. Cell 2012,150(5):948–60. 10.1016/j.cell.2012.06.048
Loyola A, Tagami H, Bonaldi T, Roche D, Quivy JP, Imhof A, et al.: The HP1α-CAF1-SetDB1-containing complex provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin. EMBO Rep 2009,10(7):769–75. 10.1038/embor.2009.90
Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T: Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 2001,410(6824):116–20. 10.1038/35065132
Peters AH, Kubicek S, Mechtler K, O’Sullivan RJ, Derijck AA, Perez-Burgos L, et al.: Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 2003,12(6):1577–89. 10.1016/S1097-2765(03)00477-5
McManus KJ, Biron VL, Heit R, Underhill DA, Hendzel MJ: Dynamic changes in histone H3 lysine 9 methylations: identification of a mitosis-specific function for dynamic methylation in chromosome congression and segregation. J Biol Chem 2006,281(13):8888–97. 10.1074/jbc.M505323200
Peters AH, O’Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C, et al.: Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 2001,107(3):323–37. 10.1016/S0092-8674(01)00542-6
Peng JC, Karpen GH: H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat Cell Biol 2007,9(1):25–35. 10.1038/ncb1514
Sinclair DA, Mills K, Guarente L: Accelerated aging and nucleolar fragmentation in yeast SGS1 mutants. Science 1997,277(5330):1313–6. 10.1126/science.277.5330.1313
Murayama A, Ohmori K, Fujimura A, Minami H, Yasuzawa-Tanaka K, Kuroda T, et al.: Epigenetic control of rDNA loci in response to intracellular energy status. Cell 2008,133(4):627–39. 10.1016/j.cell.2008.03.030
Dillon N, Festenstein R: Unravelling heterochromatin: competition between positive and negative factors regulates accessibility. Trends Genet 2002,18(5):252–8. 10.1016/S0168-9525(02)02648-3
Sakaguchi A, Karachentsev D, Seth-Pasricha M, Druzhinina M, Steward R: Functional characterization of the Drosophila Hmt4–20/Suv4–20 histone methyltransferase. Genetics 2008,179(1):317–22. 10.1534/genetics.108.087650
Salic A, Waters JC, Mitchison TJ: Vertebrate shugoshin links sister centromere cohesion and kinetochore microtubule stability in mitosis. Cell 2004,118(5):567–78. 10.1016/j.cell.2004.08.016
Tang Z, Sun Y, Harley SE, Zou H, Yu H: Human Bub1 protects centromeric sister-chromatid cohesion through Shugoshin during mitosis. Proc Natl Acad Sci USA 2004,101(52):18012–7. 10.1073/pnas.0408600102
Hahn M, Dambacher S, Dulev S, Kuznetsova AY, Eck S, Worz S, et al.: Suv4–20 h2 mediates chromatin compaction and is important for cohesin recruitment to heterochromatin. Genes Dev 2013,27(8):859–72. 10.1101/gad.210377.112
Kuo AJ, Song J, Cheung P, Ishibe-Murakami S, Yamazoe S, Chen JK, et al.: The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome. Nature 2012,484(7392):115–9. 10.1038/nature10956
Greeson NT, Sengupta R, Arida AR, Jenuwein T, Sanders SL: Di-methyl H4 lysine 20 targets the checkpoint protein Crb2 to sites of DNA damage. J Biol Chem 2008,283(48):33168–74. 10.1074/jbc.M806857200
Tachibana M, Sugimoto K, Fukushima T, Shinkai Y: SET domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem 2001,276(27):25309–17. 10.1074/jbc.M101914200
Wu H, Chen X, Xiong J, Li Y, Li H, Ding X, et al.: Histone methyltransferase G9a contributes to H3K27 methylation in vivo . Cell Res 2011,21(2):365–7. 10.1038/cr.2010.157
Gao S, Xiong J, Zhang C, Berquist BR, Yang R, Zhao M, et al.: Impaired replication elongation in Tetrahymena mutants deficient in histone H3 Lys 27 monomethylation. Genes Dev 2013,27(15):1662–79. 10.1101/gad.218966.113
Picketts DJ, Higgs DR, Bachoo S, Blake DJ, Quarrell OW, Gibbons RJ: ATRX encodes a novel member of the SNF2 family of proteins: mutations point to a common mechanism underlying the ATR-X syndrome. Hum Mol Genet 1996,5(12):1899–907. 10.1093/hmg/5.12.1899
McDowell TL, Gibbons RJ, Sutherland H, O’Rourke DM, Bickmore WA, Pombo A, et al.: Localization of a putative transcriptional regulator (ATRX) at pericentromeric heterochromatin and the short arms of acrocentric chromosomes. Proc Natl Acad Sci USA 1999,96(24):13983–8. 10.1073/pnas.96.24.13983
Ishov AM, Vladimirova OV, Maul GG: Heterochromatin and ND10 are cell-cycle regulated and phosphorylation-dependent alternate nuclear sites of the transcription repressor Daxx and SWI/SNF protein ATRX. J Cell Sci 2004,117(17):3807–20. 10.1242/jcs.01230
Lewis PW, Elsaesser SJ, Noh KM, Stadler SC, Allis CD: Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci USA 2010,107(32):14075–80. 10.1073/pnas.1008850107
Drane P, Ouararhni K, Depaux A, Shuaib M, Hamiche A: The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev 2010,24(12):1253–65. 10.1101/gad.566910
Santenard A, Ziegler-Birling C, Koch M, Tora L, Bannister AJ, Torres-Padilla ME: Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat Cell Biol 2010,12(9):853–62. 10.1038/ncb2089
Fan JY, Rangasamy D, Luger K, Tremethick DJ: H2A.Z alters the nucleosome surface to promote HP1α-mediated chromatin fiber folding. Mol Cell 2004,16(4):655–61. 10.1016/j.molcel.2004.10.023
Rangasamy D, Berven L, Ridgway P, Tremethick DJ: Pericentric heterochromatin becomes enriched with H2A.Z during early mammalian development. EMBO J 2003,22(7):1599–607. 10.1093/emboj/cdg160
Bird A: DNA methylation patterns and epigenetic memory. Genes Dev 2002,16(1):6–21. 10.1101/gad.947102
Okano M, Bell DW, Haber DA, Li E: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999,99(3):247–57. 10.1016/S0092-8674(00)81656-6
Tamaru H, Selker EU: A histone H3 methyltransferase controls DNA methylation in Neurospora crassa . Nature 2001,414(6861):277–83. 10.1038/35104508
Jackson JP, Lindroth AM, Cao X, Jacobsen SE: Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 2002,416(6880):556–60. 10.1038/nature731
Lehnertz B, Ueda Y, Derijck AAHA, Braunschweig U, Perez-Burgos L, Kubicek S, et al.: Suv39h -mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 2003,13(14):1192–200. 10.1016/S0960-9822(03)00432-9
Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA, et al.: The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 2007,450(7171):908–12. 10.1038/nature06397
Rothbart SB, Krajewski K, Nady N, Tempel W, Xue S, Badeaux AI, et al.: Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Nat Struct Mol Biol 2012,19(11):1155–60. 10.1038/nsmb.2391
Wang G, Allis C, Chi P: Chromatin remodeling and cancer, part II: ATP-dependent chromatin remodeling. Trends Mol Med 2007,13(9):373–80. 10.1016/j.molmed.2007.07.004
Pegoraro G, Kubben N, Wickert U, Gohler H, Hoffmann K, Misteli T: Ageing-related chromatin defects through loss of the NURD complex. Nat Cell Biol 2009,11(10):1261–7. 10.1038/ncb1971
Strohner R, Nemeth A, Jansa P, Hofmann-Rohrer U, Santoro R, Langst G, et al.: NoRC - a novel member of mammalian ISWI-containing chromatin remodeling machines. EMBO J 2001,20(17):4892–900. 10.1093/emboj/20.17.4892
Postepska-Igielska A, Krunic D, Schmitt N, Greulich-Bode KM, Boukamp P, Grummt I: The chromatin remodelling complex NoRC safeguards genome stability by heterochromatin formation at telomeres and centromeres. EMBO Rep 2013,14(8):704–10. 10.1038/embor.2013.87
Guetg C, Lienemann P, Sirri V, Grummt I, Hernandez-Verdun D, Hottiger MO, et al.: The NoRC complex mediates the heterochromatin formation and stability of silent rRNA genes and centromeric repeats. EMBO J 2010,29(13):2135–46. 10.1038/emboj.2010.17
Collins N, Poot RA, Kukimoto I, García-Jiménez C, Dellaire G, Varga-Weisz PD: An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nat Genet 2002,32(4):627–32. 10.1038/ng1046
Eisen JA, Sweder KS, Hanawalt PC: Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res 1995,23(14):2715–23. 10.1093/nar/23.14.2715
Huang J, Fan T, Yan Q, Zhu H, Fox S, Issaq HJ, et al.: Lsh, an epigenetic guardian of repetitive elements. Nucleic Acids Res 2004,32(17):5019–28. 10.1093/nar/gkh821
Yan Q, Huang J, Fan T, Zhu H, Muegge K: Lsh, a modulator of CpG methylation, is crucial for normal histone methylation. EMBO J 2003,22(19):5154–62. 10.1093/emboj/cdg493
Muegge K: Lsh, a guardian of heterochromatin at repeat elements. Biochem Cell Biol 2005,83(4):548–54. 10.1139/o05-119
Bantignies F, Cavalli G: Cellular memory and dynamic regulation of Polycomb group proteins. Curr Opin Cell Biol 2006,18(3):275–83. 10.1016/j.ceb.2006.04.003
Margueron R, Reinberg D: The Polycomb complex PRC2 and its mark in life. Nature 2011,469(7330):343–9. 10.1038/nature09784
Kirmizis A, Bartley SM, Kuzmichev A, Margueron R, Reinberg D, Green R, et al.: Silencing of human Polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev 2004,18(13):1592–605. 10.1101/gad.1200204
Li G, Margueron R, Ku M, Chambon P, Bernstein BE, Reinberg D: Jarid2 and PRC2, partners in regulating gene expression. Genes Dev 2010,24(4):368–80. 10.1101/gad.1886410
Pasini D, Cloos PA, Walfridsson J, Olsson L, Bukowski JP, Johansen JV, et al.: JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 2010,464(7286):306–10. 10.1038/nature08788
Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D: Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev 2002,16(22):2893–905. 10.1101/gad.1035902
Puschendorf M, Terranova R, Boutsma E, Mao X, Isono K, Brykczynska U, et al.: PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat Genet 2008,40(4):411–20. 10.1038/ng.99
Moazed D: Mechanisms for the inheritance of chromatin states. Cell 2011,146(4):510–8. 10.1016/j.cell.2011.07.013
Strahl-Bolsinger S, Hecht A, Luo K, Grunstein M: SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev 1997,11(1):83–93. 10.1101/gad.11.1.83
Kim EJ, Um SJ: SIRT1: roles in aging and cancer. BMB Rep 2008,41(11):751–6. 10.5483/BMBRep.2008.41.11.751
Vaquero A, Sternglanz R, Reinberg D: NAD + -dependent deacetylation of H4 lysine 16 by class III HDACs. Oncogene 2007,26(37):5505–20. 10.1038/sj.onc.1210617
Noma K, Sugiyama T, Cam H, Verdel A, Zofall M, Jia S, et al.: RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nat Genet 2004,36(11):1174–80. 10.1038/ng1452
Flamm WG, Walker PM, McCallum M: Some properties of the single strands isolated from the DNA of the nuclear satellite of the mouse ( Mus musculus ). J Mol Biol 1969,40(3):423–43. 10.1016/0022-2836(69)90163-6
Enukashvily NI, Ponomartsev NV: Mammalian satellite DNA: a speaking dumb. Adv Protein Chem Struct Biol. 2013, 90:31–65.
Eymery A, Horard B, El Atifi-Borel M, Fourel G, Berger F, Vitte AL, et al.: A transcriptomic analysis of human centromeric and pericentric sequences in normal and tumor cells. Nucleic Acids Res 2009,37(19):6340–54. 10.1093/nar/gkp639
Hall LE, Mitchell SE, O’Neill RJ: Pericentric and centromeric transcription: a perfect balance required. Chromosome Res 2012,20(5):535–46. 10.1007/s10577-012-9297-9
Rudert F, Bronner S, Garnier JM, Dolle P: Transcripts from opposite strands of γ satellite DNA are differentially expressed during mouse development. Mamm Genome 1995,6(2):76–83. 10.1007/BF00303248
Valgardsdottir R, Chiodi I, Giordano M, Cobianchi F, Riva S, Biamonti G: Structural and functional characterization of noncoding repetitive RNAs transcribed in stressed human cells. Mol Biol Cell 2005,16(6):2597–604. 10.1091/mbc.E04-12-1078
Jolly C, Metz A, Govin J, Vigneron M, Turner BM, Khochbin S, et al.: Stress-induced transcription of satellite III repeats. J Cell Biol 2004,164(1):25–33. 10.1083/jcb.200306104
Martens JH, O’Sullivan RJ, Braunschweig U, Opravil S, Radolf M, Steinlein P, et al.: The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J 2005,24(4):800–12. 10.1038/sj.emboj.7600545
Terranova R, Sauer S, Merkenschlager M, Fisher AG: The reorganisation of constitutive heterochromatin in differentiating muscle requires HDAC activity. Exp Cell Res 2005,310(2):344–56. 10.1016/j.yexcr.2005.07.031
Djupedal I, Ekwall K: Epigenetics: heterochromatin meets RNAi. Cell Res 2009,19(3):282–95. 10.1038/cr.2009.13
Lippman Z, Martienssen R: The role of RNA interference in heterochromatic silencing. Nature 2004,431(7006):364–70. 10.1038/nature02875
Chen ES, Zhang K, Nicolas E, Cam HP, Zofall M, Grewal SI: Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature 2008,451(7179):734–7. 10.1038/nature06561
Fukagawa T, Nogami M, Yoshikawa M, Ikeno M, Okazaki T, Takami Y, et al.: Dicer is essential for the formation of the heterochromatin structure in vertebrate cells. Nat Cell Biol 2004,6(8):784–91. 10.1038/ncb1155
Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, et al.: Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 2005,19(4):489–501. 10.1101/gad.1248505
Hsieh CL, Lin CL, Liu H, Chang YJ, Shih CJ, Zhong CZ, et al.: WDHD1 modulates the post-transcriptional step of the centromeric silencing pathway. Nucleic Acids Res 2011,39(10):4048–62. 10.1093/nar/gkq1338
Lu J, Gilbert DM: Proliferation-dependent and cell cycle regulated transcription of mouse pericentric heterochromatin. J Cell Biol 2007,179(3):411–21. 10.1083/jcb.200706176
Fischle W, Tseng BS, Dormann HL, Ueberheide BM, Garcia BA, Shabanowitz J, et al.: Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 2005,438(7071):1116–22. 10.1038/nature04219
Maison C, Bailly D, Peters AH, Quivy JP, Roche D, Taddei A, et al.: Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat Genet 2002,30(3):329–34. 10.1038/ng843
Muchardt C, Guilleme M, Seeler JS, Trouche D, Dejean A, Yaniv M: Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1α. EMBO Rep 2002,3(10):975–81. 10.1093/embo-reports/kvf194
Probst AV, Okamoto I, Casanova M, El Marjou F, Le Baccon P, Almouzni G: A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev Cell 2010,19(4):625–38. 10.1016/j.devcel.2010.09.002
Enukashvily NI, Malashicheva AB, Waisertreiger IS: Satellite DNA spatial localization and transcriptional activity in mouse embryonic E-14 and IOUD2 stem cells. Cytogenet Genome Res 2009,124(3–4):277–87.
Peinado H, Portillo F, Cano A: Switching on-off Snail: LOXL2 versus GSK3β. Cell Cycle 2005,4(12):1749–52. 10.4161/cc.4.12.2224
Enukashvily NI, Donev R, Waisertreiger IS, Podgornaya OI: Human chromosome 1 satellite 3 DNA is decondensed, demethylated and transcribed in senescent cells and in A431 epithelial carcinoma cells. Cytogenet Genome Res 2007,118(1):42–54. 10.1159/000106440
Denegri M, Moralli D, Rocchi M, Biggiogera M, Raimondi E, Cobianchi F, et al.: Human chromosomes 9, 12, and 15 contain the nucleation sites of stress-induced nuclear bodies. Mol Biol Cell 2002,13(6):2069–79. 10.1091/mbc.01-12-0569
Jolly C, Konecny L, Grady DL, Kutskova YA, Cotto JJ, Morimoto RI, et al.: In vivo binding of active heat shock transcription factor 1 to human chromosome 9 heterochromatin during stress. J Cell Biol 2002,156(5):775–81. 10.1083/jcb.200109018
Chiodi I, Corioni M, Giordano M, Valgardsdottir R, Ghigna C, Cobianchi F, et al.: RNA recognition motif 2 directs the recruitment of SF2/ASF to nuclear stress bodies. Nucleic Acids Res 2004,32(14):4127–36. 10.1093/nar/gkh759
Metz A, Soret J, Vourc’h C, Tazi J, Jolly C: A key role for stress-induced satellite III transcripts in the relocalization of splicing factors into nuclear stress granules. J Cell Sci 2004,117(19):4551–8. 10.1242/jcs.01329
Morozov VM, Gavrilova EV, Ogryzko VV, Ishov AM: Dualistic function of Daxx at centromeric and pericentromeric heterochromatin in normal and stress conditions. Nucleus 2012,3(3):276–85. 10.4161/nucl.20180
Lamszus K, Kluwe L, Matschke J, Meissner H, Laas R, Westphal M: Allelic losses at 1p, 9q, 10q, 14q, and 22q in the progression of aggressive meningiomas and undifferentiated meningeal sarcomas. Cancer Genet Cytogenet 1999,110(2):103–10. 10.1016/S0165-4608(98)00209-X
Biamonti G: Nuclear stress bodies: a heterochromatin affair? Nat Rev Mol Cell Biol 2004,5(6):493–8. 10.1038/nrm1405
Jolly C, Lakhotia SC: Human sat III and Drosophila hsrω transcripts: a common paradigm for regulation of nuclear RNA processing in stressed cells. Nucleic Acids Res 2006,34(19):5508–14. 10.1093/nar/gkl711
Bouzinba-Segard H, Guais A, Francastel C: Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function. Proc Natl Acad Sci USA 2006,103(23):8709–14. 10.1073/pnas.0508006103
Zhu Q, Pao GM, Huynh AM, Suh H, Tonnu N, Nederlof PM, et al.: BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature 2011,477(7363):179–84. 10.1038/nature10371
Ting DT, Lipson D, Paul S, Brannigan BW, Akhavanfard S, Coffman EJ, et al.: Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science 2011,331(6017):593–6. 10.1126/science.1200801
Shumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR, Erdos MR, et al.: Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci USA 2006,103(23):8703–8. 10.1073/pnas.0602569103
Frescas D, Guardavaccaro D, Kuchay SM, Kato H, Poleshko A, Basrur V, et al.: KDM2A represses transcription of centromeric satellite repeats and maintains the heterochromatic state. Cell Cycle 2008,7(22):3539–47. 10.4161/cc.7.22.7062
Sugimura K, Fukushima Y, Ishida M, Ito S, Nakamura M, Mori Y, et al.: Cell cycle-dependent accumulation of histone H3.3 and euchromatic histone modifications in pericentromeric heterochromatin in response to a decrease in DNA methylation levels. Exp Cell Res 2010,316(17):2731–46. 10.1016/j.yexcr.2010.06.016
Jeanpierre M, Turleau C, Aurias A, Prieur M, Ledeist F, Fischer A, et al.: An embryonic-like methylation pattern of classical satellite DNA is observed in ICF syndrome. Hum Mol Genet 1993,2(6):731–5. 10.1093/hmg/2.6.731
Prokocimer M, Barkan R, Gruenbaum Y: Hutchinson-Gilford progeria syndrome through the lens of transcription. Aging Cell 2013,12(4):533–43. 10.1111/acel.12070
Solovei I, Wang AS, Thanisch K, Schmidt CS, Krebs S, Zwerger M, et al.: LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 2013,152(3):584–98. 10.1016/j.cell.2013.01.009
Vassen L, Fiolka K, Möröy T: Gfi1b alters histone methylation at target gene promoters and sites of γ-satellite containing heterochromatin. EMBO J 2006,25(11):2409–19. 10.1038/sj.emboj.7601124
Zeng L, Yap KL, Ivanov AV, Wang X, Mujtaba S, Plotnikova O, et al.: Structural insights into human KAP1 PHD finger-bromodomain and its role in gene silencing. Nat Struct Mol Biol 2008,15(6):626–33. 10.1038/nsmb.1416
Yamashita K, Sato A, Asashima M, Wang PC, Nishinakamura R: Mouse homolog of SALL1, a causative gene for Townes-Brocks syndrome, binds to A/T-rich sequences in pericentric heterochromatin via its C-terminal zinc finger domains. Genes Cells 2007,12(2):171–82. 10.1111/j.1365-2443.2007.01042.x