Composition engineering of Sb2S3 film enabling high performance solar cells
Tài liệu tham khảo
Chang, 2012, Panchromatic photon-harvesting by hole-conducting materials in inorganic-organic heterojunction sensitized-solar cell through the formation of nanostructured electron channels, Nano Lett, 12, 1863, 10.1021/nl204224v
Choi, 2014, Highly improved Sb2S3 sensitized-inorganic-organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy, Adv Funct Mater, 24, 3587, 10.1002/adfm.201304238
Itzhaik, 2009, Sb2S3-sensitized nanoporous TiO2 solar cells, J Phys Chem C, 113, 4254, 10.1021/jp900302b
Tanaka, 2011, Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol-gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency, Solar Energy Mater Solar Cells, 95, 838, 10.1016/j.solmat.2010.10.031
Lundberg, 2005, The effect of Ga-grading in CIGS thin film solar cells, Thin Solid Films, 480, 520, 10.1016/j.tsf.2004.11.080
Jung, 2010, Effects of Ga contents on properties of CIGS thin films and solar cells fabricated by co-evaporation technique, Curr Appl Phys, 10, 990, 10.1016/j.cap.2009.11.082
Wang, 2017, Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer, Nat Energy, 2, 17046, 10.1038/nenergy.2017.46
Choi, 2014, Efficient inorganic-organic heterojunction solar cells employing Sb2(Sx/Se1–x)3 graded-composition sensitizers, Adv Energy Mater, 4, 1301680, 10.1002/aenm.201301680
Christians, 2014, Rate limiting interfacial hole transfer in Sb2S3 solid-state solar cells, Energy Environ Sci, 7, 1148, 10.1039/C3EE43844A
Lan, 2018, Enhanced charge extraction of Li-doped TiO2 for efficient thermal-evaporated Sb2S3 thin film solar cells, Materials, 11, 355, 10.3390/ma11030355
Tang, 2018, Vacuum assisted solution processing for highly efficient Sb2S3 solar cells, J Mater Chem A, 6, 16322, 10.1039/C8TA05614E
Tang, 2018, N-type doping of Sb2S3 light harvesting film enabling high efficiency planar heterojunction solar cells, ACS Appl Mater Interfaces, 10, 30314, 10.1021/acsami.8b08965
Itzhaik, 2015, Band diagram and effects of the kscn treatment in TiO2/Sb2S3/CuSCN eta cells, J Phys Chem C, 120, 31, 10.1021/acs.jpcc.5b09233
Fu, 2015, Synthesis and enhanced electrochemical catalytic performance of monolayer Ws2(1–x)Se2x with a tunable band gap, Adv Mater, 27, 4732, 10.1002/adma.201500368
Choi, 2015, Efficient Sb2S3-sensitized solar cells via single-step deposition of Sb2S3 using S/Sb-ratio-controlled SbCl3-thiourea complex solution, Adv Funct Mater, 25, 2892, 10.1002/adfm.201500296
Zakaznova-Herzog, 2006, High resolution xps study of the large-band-gap semiconductor stibnite (Sb2S3): structural contributions and surface reconstruction, Surface Sci, 600, 348, 10.1016/j.susc.2005.10.034
Lan, 2018, Microstructural and optical properties of Sb2S3 film thermally evaporated from antimony pentasulfide and efficient planar solar cells, Phys Status Solidi RRL, 12, 1800025, 10.1002/pssr.201800025
Yuan, 2017, Postsurface selenization for high performance Sb2S3 planar thin film solar cells, ACS Photon, 4, 2862, 10.1021/acsphotonics.7b00858