Sb2S3 Solar Cells
Tài liệu tham khảo
REN21, Renewables 2017 Global Status Report, REN21 Secretariat, ISBN 978-3-9818107-6-9.
Welch, 2017, Trade-offs in thin film solar cells with layered chalcostibite photovoltaic absorbers, Adv. Energy Mater., 7, 1
Sinsermsuksakul, 2014, Overcoming efficiency limitations of SnS-based solar cells, Adv. Energy Mater., 4, 1, 10.1002/aenm.201400496
Steinmann, 2015, Photovoltaics: non-cubic solar cell materials, Nat. Photonics, 9, 355, 10.1038/nphoton.2015.85
Green, 2014, The emergence of perovskite solar cells, Nat. Photonics, 8, 506, 10.1038/nphoton.2014.134
Kaltenbrunner, 2012, Ultrathin and lightweight organic solar cells with high flexibility, Nat. Commun., 3, 770, 10.1038/ncomms1772
Vermang, 2014, Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells, Prog. Photovolt., 22, 1023, 10.1002/pip.2527
Paudel, 2012, Ultrathin CdS/CdTe solar cells by sputtering, Sol. Energy Mater. Sol. Cells, 105, 109, 10.1016/j.solmat.2012.05.035
Vermang, 2012, Approach for Al2O3 rear surface passivation of industrial p-type Si PERC above 19%, Prog. Photovolt. Res. Appl., 20, 269, 10.1002/pip.2196
Clady, 2012, Interplay between the hot phonon effect and intervalley scattering on the cooling rate of hot carriers in GaAs and InP, Prog. Photovolt. Res. Appl., 20, 82, 10.1002/pip.1121
Chiu, P.T., Law, D.C., Woo, R.L., Singer, S.B., Bhusari, D., Hong, W.D., Zakaria, A., Boisvert, J., Mesropian, S., King, R.R., et al. (2014). 35.8% space and 38.8% terrestrial 5J direct bonded cells. 2014 IEEE 40th Photovolt. Spec. Conf. PVSC 2014, pp 11–13.
Semonin, 2011, Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell, Science, 334, 1530, 10.1126/science.1209845
Philipps, S., Ise, F., and Warmuth, W.. (2017). Fraunhofer ISE: photovoltaics report.https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf
Jackson, 2011, New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%, Prog. Photovoltaics Res. Appl., 19, 894, 10.1002/pip.1078
Burst, 2016, CdTe solar cells with open-circuit voltage breaking the 1 V barrier, Nat. Energy, 1, 16015, 10.1038/nenergy.2016.15
Yang, 2015, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, 348, 1234, 10.1126/science.aaa9272
Polizzotti, 2013, The state and future prospects of kesterite photovoltaics, Energ. Environ. Sci., 11, 3171, 10.1039/c3ee41781f
Wang, 2014, Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency, Adv. Energy Mater., 4, 1, 10.1002/aenm.201301465
Sinsermsuksakul, 2013, Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfide buffer layer, Appl. Phys. Lett., 102, 053901, 10.1063/1.4789855
Kanai, 2015, Fabrication of Cu2SnS3 thin-film solar cells with power conversion efficiency of over 4%, Jpn. J. Appl. Phys., 54, 08KC06, 10.7567/JJAP.54.08KC06
Lee, 2014, Improved Cu2O-based solar cells using atomic layer deposition to control the Cu oxidation state at the p-n junction, Adv. Energy Mater., 4, 1301916, 10.1002/aenm.201301916
Yang, 2014, CuSbS2 as a promising earth-abundant photovoltaic absorber material: a combined theoretical and experimental study, Chem. Mater., 26, 3135, 10.1021/cm500516v
Yamada, 2015, P- to n-type conversion and nonmetal-metal transition of lithium-inserted Cu3N films, Chem. Mater., 27, 8076, 10.1021/acs.chemmater.5b03781
Luo, 2015, High efficient and stable solid solar cell: based on FeS2 nanocrystals and P3HT: PCBM, Energy Procedia, 75, 2181, 10.1016/j.egypro.2015.07.368
Ge, 2017, Oxygenated CdS buffer layers enabling high open-circuit voltages in earth-abundant Cu2BaSnS4 thin-film solar cells, Adv. Energy Mater., 7, 1601803, 10.1002/aenm.201601803
Wang, 2017, Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer, Nat. Energy, 2, 17046, 10.1038/nenergy.2017.46
Ghosh, 1979, Optical properties of amorphous and crystalline Sb2S3 thin films, Thin Solid Films, 60, 61, 10.1016/0040-6090(79)90347-X
Swanson, R.M.. (2005). Approaching the 29% limit efficiency of silicon solar cells. In 31st Photovoltaic Specialists Conference, pp 889–894.
Vos, 1980, Detailed balance limit of the efficiency of tandem solar cells, J. Phys. D Appl. Phys., 13, 839, 10.1088/0022-3727/13/5/018
Rhee, 2013, A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites, NPG Asia Mater., 5, e68, 10.1038/am.2013.53
Yang, 2015, Assessment of hybrid organic-inorganic antimony sulfides for earth-abundant photovoltaic applications, J. Phys. Chem. Lett., 6, 5009, 10.1021/acs.jpclett.5b02555
Wang, 2017, Development of antimony sulfide–selenide Sb2(S,Se)3-based solar cells, J. Energy Chem.
Bayliss, 1972, Refinement of the crystal structure of stibnite, Sb2S3, Z. Kristallogr, 135, 308, 10.1524/zkri.1972.135.3-4.308
Kyono, 2002, Low-temperature crystal structures of stibnite implying orbital overlap of Sb 5s2 inert pair electrons, Phys. Chem. Miner., 29, 254, 10.1007/s00269-001-0227-1
Kyono, 2004, Structural variations induced by difference of the inert pair effect in the stibnite-bismuthinite solid solution series (Sb,Bi)2S3, Am. Mineral., 89, 932, 10.2138/am-2004-0702
Ibáñez, 2016, Structural, vibrational, and electronic study of Sb2S3 at high pressure, J. Phys. Chem. C, 120, 10547, 10.1021/acs.jpcc.6b01276
Lundegaard, 2003, Equation of state and crystal structure of Sb2S3 between 0 and 10 GPa, Phys. Chem. Miner., 30, 463, 10.1007/s00269-003-0339-x
Roy, 1978, Electrical and magnetic properties of antimony sulphide (Sb2S3) crystals and the mechanism of carrier transport in it, Solid State Commun., 25, 937, 10.1016/0038-1098(78)90306-X
Bohac, 1975, Zone refining of antimony trisulfide, Mater. Res. Bull., 10, 613, 10.1016/0025-5408(75)90042-2
Caracas, 2005, First-principles study of the electronic properties of A2B3 minerals, with A=Bi,Sb and B=S,Se, Phys. Chem. Miner., 32, 295, 10.1007/s00269-005-0470-y
Filip, 2013, GW quasiparticle band structures of stibnite, antimonselite, bismuthinite, and guanajuatite, Phys. Rev. B, 87, 1, 10.1103/PhysRevB.87.205125
Ben Nasr, 2011, Electronic structure and optical properties of Sb2S3 crystal, Phys. B Condens. Matter, 406, 287, 10.1016/j.physb.2010.10.070
Koc, 2012, First principles prediction of the elastic, electronic, and optical properties of Sb2S3 and Sb2Se3 compounds, Solid State Sci., 14, 1211, 10.1016/j.solidstatesciences.2012.06.003
Vadapoo, 2011, Self-standing nanoribbons of antimony selenide and antimony sulfide with well-defined size and band gap, Nanotechnology, 22, 175705, 10.1088/0957-4484/22/17/175705
Brandt, 2015, Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites, MRS Commun., 5, 265, 10.1557/mrc.2015.26
Lee, Y.S., Bertoni, M., Chan, M.K., Ceder, G., and Buonassisi, T.. (2009). Earth abundant materials for high efficiency heterojunction thin film solar cells. In 34th Photovoltaic Specialists Conference, 002375–002377.
Wang, 1996, Studies on bond and atomic valences. I. Correlation between bond valence and bond angles in SbIII chalcogen compounds: the influence of lone-electron pairs, Acta Crystallogr. Sect. B, B52, 7, 10.1107/S0108768195004472
Fujita, 1987, The fundamental absorption edge and electronic structure in Sb2S3, J. Phys. Soc. Jpn., 56, 3734, 10.1143/JPSJ.56.3734
Medina-Montes, 2016, Structural, morphological and spectroscopic ellipsometry studies on sputter deposited Sb2S3 thin films, J. Mater. Sci. Mater. Electron., 27, 9710, 10.1007/s10854-016-5033-0
El Mandouh, 1990, Some physical properties of evaporated thin films of antimony trisulphide, J. Mater. Sci., 25, 1715, 10.1007/BF01045375
Savadogo, 1992, Characterizations of antimony tri-sulfide chemically deposited with silicotungstic acid, J. Electrochem. Soc., 139, L16, 10.1149/1.2069211
Vedeshwar, 1995, Optical properties of amorphous and polycrystalline stibnite (Sb2S3) films, J. Phys. III EDP Sciences, 5, 1161
Versavel, 2007, Structural and optical properties of amorphous and crystalline antimony sulfide thin-films, Thin Solid Films, 515, 7171, 10.1016/j.tsf.2007.03.043
Zhou, 2015, Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries, Nat. Photonics, 9, 409, 10.1038/nphoton.2015.78
Yu, 2013, Inverse design of high absorption thin-film photovoltaic materials, Adv. Energy Mater., 3, 43, 10.1002/aenm.201200538
Salem, 2001, Structure and optical properties of chemically deposited Sb2S3 thin films, J. Phys. D Appl. Phys., 34, 12, 10.1088/0022-3727/34/1/303
Tigǎu, 2008, Structural characterization and optical properties of annealed Sb2S3 thin films, Rom. Rep. Phys., 53, 209
Escorcia-García, 2014, Heterojunction CdS/Sb2S3 solar cells using antimony sulfide thin films prepared by thermal evaporation, Thin Solid Films, 569, 28, 10.1016/j.tsf.2014.08.024
Aousgi, 2013, Structural and optical properties of amorphous Sb2S3 thin films deposited by vacuum thermal evaporation method, Curr. Appl. Phys., 13, 262, 10.1016/j.cap.2012.07.020
Sun, 2011, Structure, composition and optical properties of Cu2ZnSnS4 thin films deposited by pulsed laser deposition method, Sol. Energy Mater. Sol. Cells, 95, 2907, 10.1016/j.solmat.2011.06.026
Kazmerski, 1983, Optical properties and grain boundary effects in CuInSe2, J. Vac. Sci. Technol. A, 1, 395, 10.1116/1.571928
Fernandes, 2010, A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors, J. Phys. D Appl. Phys., 43, 215403, 10.1088/0022-3727/43/21/215403
Schneller, 2013
Lokhande, 1991, Chemical deposition of metal chalcogenide thin films, Mater. Chem. Phys., 27, 1, 10.1016/0254-0584(91)90158-Q
Savadogo, 1992, Studies on new chemically deposited photoconducting antimony trisulfide thin films, Sol. Energy Mater. Sol. Cells, 26, 117, 10.1016/0927-0248(92)90131-8
Savadogo, 1993, Low-cost technique for preparing n-Sb2S3/p-Si heterojunction solar cells, Appl. Phys. Lett., 63, 228, 10.1063/1.110349
Savadogo, 1994, Low cost Schottky barrier solar cells fabricated on CdSe and Sb2S3 films chemically deposited with silicotungstic acid, J. Electrochem. Soc., 141, 2871, 10.1149/1.2059248
Grozdanov, 1994, A simple and low-cost technique for electroless deposition of chalcogenide thin films, Semicond. Sci. Technol., 9, 1234, 10.1088/0268-1242/9/6/013
Nair, 1998, Semiconductor thin films by chemical bath deposition for solar energy related applications, Sol. Energy Mater. Sol. Cells, 52, 313, 10.1016/S0927-0248(97)00237-7
Nair, 1998, Chemically deposited Sb2S3 and Sb2S3-CuS thin films, J. Electrochem. Soc., 145, 2113, 10.1149/1.1838605
Rodriguez-Lazcano, 1999, Antimony chalcogenide thin films: chemical bath deposition and formation of new materials by post deposition thermal processing, Superficies y Vacio, 9, 100
Mane, 1999, Non-aqueous chemical bath deposition of Sb2S3 thin films, Thin Solid Films, 353, 29, 10.1016/S0040-6090(99)00362-4
Desai, 1994, Alkaline bath chemical deposition of antimony (III) sulphide thin films, Thin Solid Films, 237, 29, 10.1016/0040-6090(94)90234-8
Oja, 2006, Photoelectrical properties of In(OH)xSy/PbS(O) structures deposited by SILAR on TiO2, Semicond. Sci. Technol., 21, 520, 10.1088/0268-1242/21/4/018
Larramona, 2006, Nanostructured photovoltaic cell of the type titanium dioxide, cadmium sulfide thin coating, and copper thiocyanate showing high quantum efficiency, Chem. Mater., 18, 1688, 10.1021/cm052819n
Lévy-Clément, 2005, CdSe-sensitized p-CuSCN/Nanowire n-ZnO heterojunctions, Adv. Mater., 17, 1512, 10.1002/adma.200401848
Lan, 2009, A simple strategy for improving the energy conversion of multilayered CdTe quantum dot-sensitized solar cells, J. Mater. Chem., 19, 2349, 10.1039/b817000b
Belaidi, 2008, Influence of the local absorber layer thickness on the performance of ZnO nanorod solar cells, Phys. Status Solidi Rapid Res. Lett., 2, 172, 10.1002/pssr.200802092
Page, 2009, Copper sulfide as a light absorber in wet-chemical synthesized extremely thin absorber (ETA) solar cells, Energ. Environ. Sci., 2, 220, 10.1039/B813740D
Shen, 2012, Enhanced photocatalytic activity of ZnO microspheres via hybridization with CuInSe2 and CuInS2 nanocrystals, ACS Appl. Mater. Inter., 4, 4087, 10.1021/am3008533
Itzhaik, 2009, Sb2S3-sensitized nanoporous TiO2 solar cells, J. Phys. Chem. C, 113, 4254, 10.1021/jp900302b
Nezu, 2010, Light soaking and gas effect on nanocrystalline TiO2/Sb2S3/CuSCN photovoltaic cells following extremely thin absorber concept, J. Phys. Chem. C, 114, 6854, 10.1021/jp100401e
Tsujimoto, 2012, TiO2 surface treatment effects by Mg2+, Ba2+, and Al3+ on Sb2S3 extremely thin absorber solar cells, J. Phys. Chem. C, 116, 13465, 10.1021/jp208937j
Ito, 2013, Doping effects in Sb2S3 absorber for full-inorganic printed solar cells with 5.7% conversion efficiency, Int. J. Hydrogen Energy, 38, 16749, 10.1016/j.ijhydene.2013.02.069
Moon, 2010, Sb2S3-based mesoscopic solar cell using an organic hole conductor, J. Phys. Chem. Lett., 1, 1524, 10.1021/jz100308q
Chang, 2010, High-performance nanostructured inorganic-organic heterojunction solar cells, Nano Lett., 10, 2609, 10.1021/nl101322h
Im, 2011, Toward Interaction of sensitizer and functional moieties in hole-transporting materials for efficient semiconductor-sensitized solar cells, Nano Lett., 11, 4789, 10.1021/nl2026184
Chang, 2012, Panchromatic photon-harvesting by hole-conducting materials in inorganic-organic heterojunction sensitized-solar cell through the formation of nanostructured electron channels, Nano Lett., 12, 1863, 10.1021/nl204224v
Zheng, 2017, Solid-state nanocrystalline solar cells with an antimony sulfide absorber deposited by an in situ solid-gas reaction, J. Mater. Chem. A, 5, 4791, 10.1039/C7TA00291B
Choi, 2014, Highly improved Sb2S3 sensitized-inorganic-organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy, Adv. Funct. Mater., 24, 3587, 10.1002/adfm.201304238
Boix, 2012, Hole transport and recombination in all-solid Sb2S3-sensitized TiO2 solar cells using CuSCN as hole transporter, J. Phys. Chem. C, 116, 1579, 10.1021/jp210002c
Nguyen, 2014, Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)2 in perovskite and dye- sensitized solar cells, J. Am. Chem. Soc., 136, 10996, 10.1021/ja504539w
Darga, 2013, On charge carrier recombination in Sb2S3 and its implication for the performance of solar cells, J. Phys. Chem. C, 117, 20525, 10.1021/jp4072394
Zhang, 2017, TiO2/Sb2S3/P3HT based inorganic-organic hybrid heterojunction solar cells with enhanced photoelectric conversion performance, J. Electron. Mater., 46, 1, 10.1007/s11664-017-5439-3
Parize, 2017, ZnO/TiO2/Sb2S3 core-shell nanowire heterostructure for extremely thin absorber solar cells, J. Phys. Chem. C, 121, 9672, 10.1021/acs.jpcc.7b00178
Abulikemu, 2016, Colloidal Sb2S3 nanocrystals: synthesis, characterization and fabrication of solid-state semiconductor sensitized solar cells, J. Mater. Chem. A, 4, 6809, 10.1039/C5TA09546H
Wang, 2017, Hybrid solar cells from Sb2S3 nanoparticle ink, Sol. Energy Mater. Sol. Cells, 172, 335, 10.1016/j.solmat.2017.07.046
Li, 2016, Electrochemical atomic layer deposition of Bi2S3/Sb2S3 quantum dots co-sensitized TiO2 nanorods solar cells, J. Power Sources, 307, 690, 10.1016/j.jpowsour.2016.01.035
Kim, 2014, Efficient hole extraction from Sb2S3 heterojunction solar cells by the solid transfer of preformed PEDOT: PSS film, J. Phys. Chem. C, 118, 22672, 10.1021/jp507652r
Englman, 2015, High open circuit voltage in Sb2S3/metal oxide-based solar cells, J. Phys. Chem. C, 119, 12904, 10.1021/acs.jpcc.5b04231
Lei, 2016, Efficient planar Sb2S3 solar cells using a low-temperature solution-processed tin oxide electron conductor, Phys. Chem. Chem. Phys., 18, 16436, 10.1039/C6CP02072K
Boix, 2012, From flat to nanostructured photovoltaics: balance between thickness of the absorber and charge screening in sensitized solar cells, ACS Nano, 6, 873, 10.1021/nn204382k
Muto, 2013, Unexpected performances of flat Sb2S3-based hybrid extremely thin absorber solar cells, Appl. Phys. Express, 6, 072301, 10.7567/APEX.6.072301
Zimmermann, 2015, Toward high-efficiency solution-processed planar heterojunction Sb2S3 solar cells, Adv. Sci., 2, 1500059, 10.1002/advs.201500059
Wang, 2017, A fast chemical approach towards Sb2S3 film with a large grain size for high-performance planar heterojunction solar cells, Nanoscale, 9, 3386, 10.1039/C7NR00154A
Yuan, 2016, Efficient planar antimony sulfide thin film photovoltaics with large grain and preferential growth, Sol. Energy Mater. Sol. Cells, 157, 887, 10.1016/j.solmat.2016.07.050
Kim, 2014, Highly reproducible planar Sb2S3-sensitized solar cells based on atomic layer deposition, Nanoscale, 6, 14549, 10.1039/C4NR04148H
Sung, 2017, Systematic control of nanostructured interfaces of planar Sb2S3 solar cells by simple spin-coating process and its effect on photovoltaic properties, J. Ind. Eng. Chem., 56, 196, 10.1016/j.jiec.2017.07.012
Rühle, 2016, Tabulated values of the Shockley-Queisser limit for single junction solar cells, Sol. Energy, 130, 139, 10.1016/j.solener.2016.02.015
Lee, 2013, Defect states in hybrid solar cells consisting of Sb2S3 quantum dots and TiO2 nanoparticles, Appl. Phys. Lett., 103, 1
Tigau, 2005, Structural and electrical properties of antimony trisulfide thin films, J. Optoelectron. Adv. Mater., 7, 727
El Zawawi, 1998, Substrate temperature effect on the optical and electrical properties of antimony trisulfide thin films, Thin Solid Films, 324, 300, 10.1016/S0040-6090(98)00350-2
Arun, 1996, Phase modification by instantaneous heat treatment of Sb2S3 films and their potential for photothermal optical recording, J. Appl. Phys., 79, 4029, 10.1063/1.361832
Han, 2017, Influence of defects and dopants on the photovoltaic performance of Bi2S3: first-principles insights, J. Mater. Chem. A, 5, 6200, 10.1039/C6TA10377D
Christians, 2014, Rate limiting interfacial hole transfer in Sb2S3 solid-state solar cells, Energ. Environ. Sci., 7, 1148, 10.1039/C3EE43844A
Rajpure, 2000, (Photo)electrochemical investigations on spray deposited n-Sb2S3 thin film/polyiodide/C photoelectrochemical solar cells, Mater. Chem. Phys., 63, 263, 10.1016/S0254-0584(99)00233-3
Yu, 2016, Selecting tandem partners for silicon solar cells, Nat. Energy, 1, 16137, 10.1038/nenergy.2016.137
Leijtens, 2013, Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells, Nat. Commun., 4, 2885, 10.1038/ncomms3885
Pathak, 2014, Performance and stability enhancement of dye-sensitized and perovskite solar cells by Al doping of TiO2, Adv. Funct. Mater., 24, 6046, 10.1002/adfm.201401658
Giordano, 2016, Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells, Nat. Commun., 7, 10379, 10.1038/ncomms10379
Sathasivam, 2015, Tungsten doped TiO2 with enhanced photocatalytic and optoelectrical properties via aerosol assisted chemical vapor deposition, Sci. Rep., 5, 10952, 10.1038/srep10952
Lee, 2012, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 338, 643, 10.1126/science.1228604
Tiedje, 1982, Band tail recombination limit to the output voltage of amorphous silicon solar cells, Appl. Phys. Lett., 40, 627, 10.1063/1.93168
Kurita, 1987, Anomalous behavior of the absorption tail due to a phase transition in Sb2S3, Phys. Lett. A, 126, 141, 10.1016/0375-9601(87)90575-5
Lakhdar, 2014, Thickness effect on the structural and optical constants of stibnite thin films prepared by sulfidation annealing of antimony films, Optik, 125, 2295, 10.1016/j.ijleo.2013.10.114
De Wolf, 2014, Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance, J. Phys. Chem. Lett., 5, 1035, 10.1021/jz500279b
You, 2015, Oxide-free Sb2S3 sensitized solar cells fabricated by spin and heat-treatment of Sb(III)(thioacetamide)2Cl3, Org. Electron., 21, 155, 10.1016/j.orgel.2015.02.015
Gödel, 2017, Partial oxidation of the absorber layer reduces charge carrier recombination in antimony sulfide solar cells, Phys. Chem. Chem. Phys., 19, 1425, 10.1039/C6CP07559B
Maiti, 2012, A chemical precursor for depositing Sb2S3 onto mesoporous TiO2 layers in nonaqueous media and its application to solar cells, Dalton Trans., 41, 11569, 10.1039/c2dt31348k
Liu, 2017, Enhanced Sb2Se3 solar cell performance through theory-guided defect control, Prog. Photovolt. Res. Appl., 25, 861, 10.1002/pip.2900
Jo, 2016, Time-resolved photocurrent of an organic-inorganic hybrid solar cell based on Sb2S3, J. Korean Phys. Soc., 69, 541, 10.3938/jkps.69.541
Green, 2017, Solar cell efficiency tables (version 50), Prog. Photovolt. Res. Appl., 25, 668, 10.1002/pip.2909
Dimroth, 2014, Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency, Prog. Photovolt. Res. Appl., 22, 277, 10.1002/pip.2475
Essig, 2017, Raising the one-sun conversion efficiency of III-V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions, Nat. Energy, 2, 17144, 10.1038/nenergy.2017.144
Greenaway, 2017, Low-cost approaches to III-V semiconductor growth for photovoltaic applications, ACS Energy Lett., 2, 2270, 10.1021/acsenergylett.7b00633
Yoshikawa, 2017, Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nat. Energy, 2, 17032, 10.1038/nenergy.2017.32
De Wolf, 2007, Boron-doped a-Si:Hc-Si interface passivation: degradation mechanism, Appl. Phys. Lett., 91, 1, 10.1063/1.2783972
Biegelsen, 1979, Hydrogen evolution and defect creation in amorphous Si:H alloys, Phys. Rev. B, 20, 4839, 10.1103/PhysRevB.20.4839
Saliba, 2016, Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance, Science, 354, 206, 10.1126/science.aah5557
Kayes, B.M., Nie, H., Twist, R., Spruytte, S.G., Reinhardt, F., Kizilyalli, I.C., and Higashi, G.S.. (2011). 27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. Conf. Rec. IEEE Photovolt. Spec. Conf., 000004–000008.
Geisz, 2013, Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cells, Appl. Phys. Lett., 103, 041118, 10.1063/1.4816837
First Solar press release. First Solar achieves yet another cell conversion efficiency world record, 24 February 2016.
Ishizuka, 2014, Structural tuning of wide-gap chalcopyrite CuGaSe2 thin films and highly efficient solar cells: differences from narrow-gap Cu(In,Ga)Se2, Prog. Photovolt. Res. Appl., 22, 821, 10.1002/pip.2464
Siemer, 2001, Efficient CuInS2 solar cells from a rapid thermal process (RTP), Sol. Energy Mater. Sol. Cells, 67, 159, 10.1016/S0927-0248(00)00276-2
Sun, 2016, Over 9% Efficient kesterite Cu2ZnSnS4 solar cell fabricated by using Zn1-xCdxS buffer layer, Adv. Energy Mater., 6, 1600046, 10.1002/aenm.201600046
Bhushan, 1981, Polycrystalline Zn3P2 Schottky barrier solar cells, Appl. Phys. Lett., 38, 39, 10.1063/1.92124
Minami, 2015, Heterojunction solar cell with 6% efficiency based on an n-type aluminum-gallium-oxide thin film and p-type sodium-doped Cu2O sheet, Appl. Phys. Express, 8, 022301, 10.7567/APEX.8.022301
Matsui, T., Sai, H., Suezaki, T., Matsumoto, M., Saito, K., Yoshida, I., and Kondo, M.. (2013). Development of highly stable and efficient amorphous silicon based solar cells. In Proc. 28th European Photovoltaic Solar Energy Conference, pp 2213–2217.
Aramoto, 1997, 16.0% efficient thin-film CdS/CdTe solar cells, Jpn. Appl. Phys., 36, 6304, 10.1143/JJAP.36.6304
White, 2014, Tandem solar cells based on high-efficiency c-Si bottom cells: top cell requirements for >30% efficiency, IEEE J. Photovoltaics, 4, 208, 10.1109/JPHOTOV.2013.2283342
Dullweber, 2017, Emitter saturation current densities of 22 fA/cm2 applied to industrial PERC solar cells approaching 22% conversion efficiency, Prog. Photovoltaics Res. Appl., 25, 509, 10.1002/pip.2806
Adachi, 2015, Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency, Appl. Phys. Lett., 107, 23, 10.1063/1.4937224