Heterojunction CdS/Sb 2 S 3 solar cells using antimony sulfide thin films prepared by thermal evaporation

Thin Solid Films - Tập 569 - Trang 28-34 - 2014
J. Escorcia-García1, D. Becerra1, M.T.S. Nair1, P.K. Nair1
1Departamento de Materiales Solares, Instituto de Energías Renovables Universidad Nacional Autónoma de México, Temixco, Morelos 62580, Mexico

Tài liệu tham khảo

Bayliss, 1972, Refinement of the crystal structure of stibnite, Sb2S3, Z. Kristallogr., 135, 308, 10.1524/zkri.1972.135.3-4.308 Madelung, 1992, 64, 10.1007/978-3-662-00464-7 Killedar, 1997, Preparation and characterization of spray deposited Sb2S3 thin films from non-aqueous medium, Mater. Chem. Phys., 47, 104, 10.1016/S0254-0584(97)80038-7 Mandal, 1990, A new chemical method for preparing semiconductor grade antimony tri-sulphide thin films, J. Phys. Chem. Solids, 51, 1339, 10.1016/0022-3697(90)90014-7 Nair, 1998, Chemically deposited Sb2S3 and Sb2S3–CuS thin films, J. Electrochem. Soc., 145, 2113, 10.1149/1.1838605 Nayak, 1984, Electrical and thermoelectric properties of Sb2S3 thin films prepared by the dip–dry method, Thin Solid Films, 122, 93, 10.1016/0040-6090(84)90001-4 El Zawawi, 1998, Substrate temperature effect on the optical and electrical properties of antimony trisulfide thin films, Thin Solid Films, 324, 300, 10.1016/S0040-6090(98)00350-2 Tigau, 2008, Influence of temperature on the microcrystalline structure of thermally evaporated Sb2S3 thin films, Cryst. Res. Technol., 43, 964, 10.1002/crat.200811139 Aousgi, 2010, Study of the optical properties of the amorphous Sb2S3 thin films, J. Optoelectron. Adv. Mater., 12, 227 Shaji, 2010, Chemically deposited Sb2S3 thin films for optical recording, J. Phys. D. Appl. Phys., 43, 075404, 10.1088/0022-3727/43/7/075404 Savadogo, 1993, Low-cost technique for preparing n-Sb2S3/p-Si heterojunction solar cells, Appl. Phys. Lett., 63, 228, 10.1063/1.110349 Abd-El-Rahman, 2011, Fabrication and electrical characterization of p-Sb2S3/n-Si heterojunctions for solar cells application, Curr. Appl. Phys., 11, 1265, 10.1016/j.cap.2010.12.006 Messina, 2008, Antimony sulphide thin film as an absorber in chemically deposited solar cells, J. Phys. D. Appl. Phys., 41, 095112, 10.1088/0022-3727/41/9/095112 Nair, 2010, PbSe thin films in all-chemically deposited solar cells, J. Electrochem. Soc., 157, D528, 10.1149/1.3467844 Moon, 2010, Sb2S3-based mesoscopic solar cell using an organic hole conductor, J. Phys. Chem. Lett., 1, 1524, 10.1021/jz100308q Fukumoto, 2013, Effect of interfacial engineering in solid-state nanostructured Sb2S3 heterojunction solar cells, Adv. Energy Mater., 3, 29, 10.1002/aenm.201200540 Gui, 2012, Effect of TiO2 mesoporous layer a nd surface treatments in determining efficiencies in antimony sulfide-(Sb2S3) sensitized solar cells, J. Electrochem. Soc., 159, B247, 10.1149/2.007203jes Choi, 2014, Highly improved Sb2S3 sensitized-inorganic–organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy, Adv. Funct. Mater., 24, 3587, 10.1002/adfm.201304238 Savadogo, 2010, vol. 12, 277 Nair, 1994, Conversion of chemically deposited photosensitive CdS thin films to n-type by air annealing and ion exchange reaction, J. Appl. Phys., 75, 1557, 10.1063/1.356391 Devika, 2006, The effect of substrate surface on the physical properties of SnS films, Semicond. Sci. Technol., 21, 1495, 10.1088/0268-1242/21/10/024 Salem, 2001, Structure and optical properties of chemically deposited Sb2S3 thin films, J. Phys. D. Appl. Phys., 34, 12, 10.1088/0022-3727/34/1/303 Kazmerski, 1980 Schröder, 1990, 597 Agekyan, 1977, Spectroscopic properties of semiconductor crystals with direct forbidden energy gap, Phys. Status Solidi A, 43, 11, 10.1002/pssa.2210430102 Sze, 1981, 19 Khallaf, 2008, Characterization of CdS thin films grown by chemical bath deposition using four different cadmium sources, Thin Solid Films, 516, 7306, 10.1016/j.tsf.2008.01.004 Butler, 1978, Prediction of flat band potentials at semiconductor–electrolyte interfaces from atomic electronegativities, J. Electrochem. Soc., 125, 228, 10.1149/1.2131419 Hotop, 1975, Binding energies in atomic negative ions, J. Phys. Chem. Ref. Data, 4, 539, 10.1063/1.555524 Kittel, 1996, 61 Liu, 2003, Interface properties and band alignment of Cu2S/CdS thin film solar cells, Thin Solid Films, 431–432, 477, 10.1016/S0040-6090(03)00190-1 Niemegeers, 1995, On the CdS/CuInSe2 conduction band discontinuity, Appl. Phys. Lett., 67, 843, 10.1063/1.115523 Helander, 2011, Work function of fluorine doped tin oxide, J. Vac. Sci. Technol. A, 29, 011019, 10.1116/1.3525641 Zheng, 2003, Modulating the work function of carbon by N or O addition and nanotip fabrication, Solid State Commun., 128, 381, 10.1016/j.ssc.2003.08.023 Dharmadasa, 2002, New ways of developing glass/conducting glass/CdS/CdTe/metal thin-film solar cells based on a new model, Semicond. Sci. Technol., 17, 1238, 10.1088/0268-1242/17/12/306 Burgelman, 2007, Numerical simulation of thin film solar cells: practical exercises with SCAPS, 357 Cárdenas, 2009, Carbon-doped Sb2S3 thin films: structural, optical and electrical properties, Sol. Energy Mater. Sol. Cells, 93, 33, 10.1016/j.solmat.2008.02.026 Thompson, 2013, Fundamental characterization of thin-film solar cells Repins, 2013, Kesterite successes, ongoing work, and challenges: a perspective from vacuum deposition, IEEE J. Photovoltaics, 3, 439, 10.1109/JPHOTOV.2012.2215842 Todorov, 2013, Beyond 11% efficiency: characteristics of state-of-the-art Cu2ZnSn(S, Se)4 solar cells, Adv. Energy Mater., 3, 34, 10.1002/aenm.201200348