Heterojunction CdS/Sb 2 S 3 solar cells using antimony sulfide thin films prepared by thermal evaporation
Tài liệu tham khảo
Bayliss, 1972, Refinement of the crystal structure of stibnite, Sb2S3, Z. Kristallogr., 135, 308, 10.1524/zkri.1972.135.3-4.308
Madelung, 1992, 64, 10.1007/978-3-662-00464-7
Killedar, 1997, Preparation and characterization of spray deposited Sb2S3 thin films from non-aqueous medium, Mater. Chem. Phys., 47, 104, 10.1016/S0254-0584(97)80038-7
Mandal, 1990, A new chemical method for preparing semiconductor grade antimony tri-sulphide thin films, J. Phys. Chem. Solids, 51, 1339, 10.1016/0022-3697(90)90014-7
Nair, 1998, Chemically deposited Sb2S3 and Sb2S3–CuS thin films, J. Electrochem. Soc., 145, 2113, 10.1149/1.1838605
Nayak, 1984, Electrical and thermoelectric properties of Sb2S3 thin films prepared by the dip–dry method, Thin Solid Films, 122, 93, 10.1016/0040-6090(84)90001-4
El Zawawi, 1998, Substrate temperature effect on the optical and electrical properties of antimony trisulfide thin films, Thin Solid Films, 324, 300, 10.1016/S0040-6090(98)00350-2
Tigau, 2008, Influence of temperature on the microcrystalline structure of thermally evaporated Sb2S3 thin films, Cryst. Res. Technol., 43, 964, 10.1002/crat.200811139
Aousgi, 2010, Study of the optical properties of the amorphous Sb2S3 thin films, J. Optoelectron. Adv. Mater., 12, 227
Shaji, 2010, Chemically deposited Sb2S3 thin films for optical recording, J. Phys. D. Appl. Phys., 43, 075404, 10.1088/0022-3727/43/7/075404
Savadogo, 1993, Low-cost technique for preparing n-Sb2S3/p-Si heterojunction solar cells, Appl. Phys. Lett., 63, 228, 10.1063/1.110349
Abd-El-Rahman, 2011, Fabrication and electrical characterization of p-Sb2S3/n-Si heterojunctions for solar cells application, Curr. Appl. Phys., 11, 1265, 10.1016/j.cap.2010.12.006
Messina, 2008, Antimony sulphide thin film as an absorber in chemically deposited solar cells, J. Phys. D. Appl. Phys., 41, 095112, 10.1088/0022-3727/41/9/095112
Nair, 2010, PbSe thin films in all-chemically deposited solar cells, J. Electrochem. Soc., 157, D528, 10.1149/1.3467844
Moon, 2010, Sb2S3-based mesoscopic solar cell using an organic hole conductor, J. Phys. Chem. Lett., 1, 1524, 10.1021/jz100308q
Fukumoto, 2013, Effect of interfacial engineering in solid-state nanostructured Sb2S3 heterojunction solar cells, Adv. Energy Mater., 3, 29, 10.1002/aenm.201200540
Gui, 2012, Effect of TiO2 mesoporous layer a nd surface treatments in determining efficiencies in antimony sulfide-(Sb2S3) sensitized solar cells, J. Electrochem. Soc., 159, B247, 10.1149/2.007203jes
Choi, 2014, Highly improved Sb2S3 sensitized-inorganic–organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy, Adv. Funct. Mater., 24, 3587, 10.1002/adfm.201304238
Savadogo, 2010, vol. 12, 277
Nair, 1994, Conversion of chemically deposited photosensitive CdS thin films to n-type by air annealing and ion exchange reaction, J. Appl. Phys., 75, 1557, 10.1063/1.356391
Devika, 2006, The effect of substrate surface on the physical properties of SnS films, Semicond. Sci. Technol., 21, 1495, 10.1088/0268-1242/21/10/024
Salem, 2001, Structure and optical properties of chemically deposited Sb2S3 thin films, J. Phys. D. Appl. Phys., 34, 12, 10.1088/0022-3727/34/1/303
Kazmerski, 1980
Schröder, 1990, 597
Agekyan, 1977, Spectroscopic properties of semiconductor crystals with direct forbidden energy gap, Phys. Status Solidi A, 43, 11, 10.1002/pssa.2210430102
Sze, 1981, 19
Khallaf, 2008, Characterization of CdS thin films grown by chemical bath deposition using four different cadmium sources, Thin Solid Films, 516, 7306, 10.1016/j.tsf.2008.01.004
Butler, 1978, Prediction of flat band potentials at semiconductor–electrolyte interfaces from atomic electronegativities, J. Electrochem. Soc., 125, 228, 10.1149/1.2131419
Hotop, 1975, Binding energies in atomic negative ions, J. Phys. Chem. Ref. Data, 4, 539, 10.1063/1.555524
Kittel, 1996, 61
Liu, 2003, Interface properties and band alignment of Cu2S/CdS thin film solar cells, Thin Solid Films, 431–432, 477, 10.1016/S0040-6090(03)00190-1
Niemegeers, 1995, On the CdS/CuInSe2 conduction band discontinuity, Appl. Phys. Lett., 67, 843, 10.1063/1.115523
Helander, 2011, Work function of fluorine doped tin oxide, J. Vac. Sci. Technol. A, 29, 011019, 10.1116/1.3525641
Zheng, 2003, Modulating the work function of carbon by N or O addition and nanotip fabrication, Solid State Commun., 128, 381, 10.1016/j.ssc.2003.08.023
Dharmadasa, 2002, New ways of developing glass/conducting glass/CdS/CdTe/metal thin-film solar cells based on a new model, Semicond. Sci. Technol., 17, 1238, 10.1088/0268-1242/17/12/306
Burgelman, 2007, Numerical simulation of thin film solar cells: practical exercises with SCAPS, 357
Cárdenas, 2009, Carbon-doped Sb2S3 thin films: structural, optical and electrical properties, Sol. Energy Mater. Sol. Cells, 93, 33, 10.1016/j.solmat.2008.02.026
Thompson, 2013, Fundamental characterization of thin-film solar cells
Repins, 2013, Kesterite successes, ongoing work, and challenges: a perspective from vacuum deposition, IEEE J. Photovoltaics, 3, 439, 10.1109/JPHOTOV.2012.2215842
Todorov, 2013, Beyond 11% efficiency: characteristics of state-of-the-art Cu2ZnSn(S, Se)4 solar cells, Adv. Energy Mater., 3, 34, 10.1002/aenm.201200348