Development of antimony sulfide–selenide Sb2(S, Se)3-based solar cells

Journal of Energy Chemistry - Tập 27 - Trang 713-721 - 2018
Xiaomin Wang1, Rongfeng Tang1, Chunyan Wu1, Changfei Zhu1, Tao Chen1
1Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, China

Tài liệu tham khảo

Green, 2015, Prog. Photovolt. Res. Appl., 23, 805, 10.1002/pip.2637 Jackson, 2011, Prog. Photovolt. Res. Appl., 19, 894, 10.1002/pip.1078 Kim, 2014, Adv. Mater., 26, 7427, 10.1002/adma.201402373 Yu, 1995, Science, 270, 1789, 10.1126/science.270.5243.1789 You, 2013, Nat. Commun., 4, 1446, 10.1038/ncomms2411 Brian, 1991, Nature, 353, 737, 10.1038/353737a0 Chang, 2012, Energy Environ. Sci., 5, 9444, 10.1039/c2ee22657j Chen, 2012, Energy Environ. Sci., 5, 6294, 10.1039/C1EE02385C Jørgensen, 2008, Sol. Energy Mater. Sol. Cells, 92, 686, 10.1016/j.solmat.2008.01.005 Kojima, 2009, J. Am. Chem. Soc., 131, 6050, 10.1021/ja809598r National Renewable Energy Laboratory, Best Research-Cell Efficiencies Chart; National Renewable Energy Laboratory www.nrel.gov/ncpv/images/efficiency_chart.jpg. He, 2016, ChemPlusChem, 81, 1292, 10.1002/cplu.201600415 Wang, 2016, Adv. Sci., 3 You, 2016, Nat. Nanotechnol., 11, 75, 10.1038/nnano.2015.230 Cheng, 2017, Sol. RRL, 1 Alberti, 2017, J. Phys. Chem. C, 121, 13577, 10.1021/acs.jpcc.7b04196 Nakashima, 2015, Appl. Phys. Express, 8, 10.7567/APEX.8.042303 Kanai, 2015, Jpn. J. Appl. Phys., 54, 08KC06, 10.7567/JJAP.54.08KC06 Li, 2016, Sol. Energy Mater. Sol. Cells, 144, 281, 10.1016/j.solmat.2015.09.017 Jin, 2017, Sol. Energy Mater. Sol. Cells, 160, 319, 10.1016/j.solmat.2016.11.001 Umehara, 2013, Appl. Phys. Express, 6, 10.7567/APEX.6.045501 Xue, 2017, J. Am. Chem. Soc, 139, 958, 10.1021/jacs.6b11705 Choi, 2014, Adv. Funct. Mater., 24, 3587, 10.1002/adfm.201304238 Wang, 2017, Nat. Energy, 2, 17046, 10.1038/nenergy.2017.46 Zeng, 2016, Semicond. Sci. Technol., 31, 10.1088/0268-1242/31/6/063001 Wang, 2017, Nanoscale, 9, 3386, 10.1039/C7NR00154A Choi, 2014, Angew. Chem. Int. Ed., 53, 1329, 10.1002/anie.201308331 Chen, 2008, J. Phys. Chem. C, 119, 672, 10.1021/jp076883z Nayak, 1982, Thin Solid Films, 92, 309, 10.1016/0040-6090(82)90153-5 Chen, 2010, Mater. Chem. Phys., 123, 236, 10.1016/j.matchemphys.2010.04.002 Ota, 2006, Cryst. Growth Des., 7, 343, 10.1021/cg0605537 Hasan, 2016, Adv. Electron. Mater., 2, 10.1002/aelm.201600182 Xie, 2003, J. Cryst. Growth, 252, 570, 10.1016/S0022-0248(03)00962-X Savadogo, 1994, J. Phys. D Appl. Phys., 27, 1070, 10.1088/0022-3727/27/5/028 George, 1981, J. Phys. D Appl. Phys., 14, 899, 10.1088/0022-3727/14/5/022 Englman, 2015, J. Phys. Chem. C, 119, 12904, 10.1021/acs.jpcc.5b04231 Shockley, 1961, J. Appl. Phys., 32, 510, 10.1063/1.1736034 Savadogo, 1992, J. Electrochem. Soc., 139, L16, 10.1149/1.2069211 Itzhaik, 2009, J. Phys. Chem. C, 113, 4254, 10.1021/jp900302b Chang, 2012, Nano Lett., 12, 1863, 10.1021/nl204224v Im, 2011, Nano Lett., 11, 4789, 10.1021/nl2026184 Ito, 2013, Int. J. Hydrog. Energy, 38, 16749, 10.1016/j.ijhydene.2013.02.069 Liu, 2012, Phys. Status Solidi B, 249, 627, 10.1002/pssb.201147393 Lei, 2016, Phys. Chem. Chem. Phys., 18, 16436, 10.1039/C6CP02072K Kim, 2014, Nanoscale, 6, 14549, 10.1039/C4NR04148H Wedemeyer, 2013, Energy Environ. Sci., 6, 67, 10.1039/C2EE23205G Choi, 2015, Adv. Funct. Mater, 25, 2892, 10.1002/adfm.201500296 Nezu, 2010, J. Phys. Chem. C, 114, 6854, 10.1021/jp100401e Moon, 2010, J. Phys. Chem. Lett., 1, 1524, 10.1021/jz100308q Chang, 2010, Nano Lett., 10, 2609, 10.1021/nl101322h Zheng, 2017, J. Mater. Chem. A, 5, 4791, 10.1039/C7TA00291B Abd-El-Rahman, 2011, Curr. Appl. Phys., 11, 1265, 10.1016/j.cap.2010.12.006 Muto, 2013, Appl. Phys. Express, 6, 10.7567/APEX.6.072301 Zimmermann, 2015, Adv. Sci., 2, 10.1002/advs.201500059 You, 2015, Org. Electron., 21, 155, 10.1016/j.orgel.2015.02.015 Guijarro, 2012, J. Phys. Chem. Lett., 3, 1351, 10.1021/jz3004365 Lai, 2012, J. Electroanal. Chem., 671, 73, 10.1016/j.jelechem.2012.02.018 Ngo, 2014, ACS Appl. Mater. Interfaces, 6, 2836, 10.1021/am405416a El-Sayad, 2008, J. Non-Cryst. Solids, 354, 3806, 10.1016/j.jnoncrysol.2008.05.004 Li, 2016, Appl. Phys. Express, 9 Messina, 2009, J. Electrochem. Soc, 156, H327, 10.1149/1.3089358 Zhou, 2014, Adv. Energy Mater., 4 Liu, 2014, ACS Appl. Mater. Interfaces, 6, 10687, 10.1021/am502427s Leng, 2014, Appl. Phys. Lett., 105, 10.1063/1.4894170 Liu, 2017, Prog. Photovolt. Res. Appl., 25, 861, 10.1002/pip.2900 Liu, 2015, Prog. Photovolt. Res. Appl., 23, 1828, 10.1002/pip.2627 Zhou, 2015, Nat. Photonics, 9, 409, 10.1038/nphoton.2015.78 Li, 2017, Sol. Energy Mater. Sol. Cells, 161, 190, 10.1016/j.solmat.2016.11.033 Deng, 2009, Nano Lett., 9, 2015, 10.1021/nl9002816 Yang, 2015, Sci. Rep., 5, 10978, 10.1038/srep10978 McCarthy, 2015, Angew. Chem. Int. Ed., 54, 8378, 10.1002/anie.201503353 Choi, 2014, Adv. Energy Mater., 4 Yang, 2017, Prog. Photovolt. Res. Appl., 25, 113, 10.1002/pip.2819 Zhang, 2017, Sol. RRL, 1